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Abstract

We study free boundary and capillary minimal hypersurfaces from the variational
point of view— they are critical point to the area functional with certain prescribed
boundary condition. In particular, we study the interaction of these objects with
scalar curvature and boundary convexity.

We first apply the method of generalized soap bubbles (u-bubbles) to study man-
ifolds with positive scalar curvature; we prove a rigidity result for free boundary
minimal hypersurfaces in a 4-manifolds with certain positivity assumptions on curva-
ture. Then we define generalized capillary surfaces (f-bubbles) and use -bubbles to
obtain geometric estimates on manifolds with non-negative scalar curvature and uni-
formly mean convex boundary, including a 1-Urysohn width bound and bandwidth
estimate for such 3-manifolds. Lastly, the method of #-bubble allows us to swap the
assumption of positive scalar curvature when using the p-bubble method with the
assumption of positive mean curvature of the boundary, obtaining analogous rigidity

results for free boundary minimal hypersurfaces.
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Chapter 1

Background and Preliminaries

1.1 Introduction and Main Results

One of the earliest problem in minimal surface theory is the “Plateau’s Problem”, to
find existence of a surface of disc type that minimize area while fixing the boundary
contour in R3. The problem was raised in 1760s by Lagrange who also discovered the
“Minimal Surface Equation” for a graph in R? (see (1.2.1)).

The Plateau’s Problem was named after Joseph Plateau, a Belgian physicist and
mathematician who conducted numerous experiments using of “soap bubbles” to study
capillary action and surface tension.

In the 1940s, Courant posed the problem of finding area minimizing surfaces whose
boundary is constrained in some fixed submanifold of R™ ([16],[21]).

However, area minimizers do not always exist given a prescribed boundary con-
straint, or they must satisfy certain rigidity conditions, as we shall also see from results
of this thesis. Mathematicians are interested more generally in, critical points to the
area functional, while giving such boundary constraint. Such surfaces are called “free
boundary minimal surfaces”, meaning as opposed to the Plateau’s problem where the
boundary is fixed, now the boundary is allowed to move “freely” as long as remaining
constrained in a fixed submanifold.

Free boundary minimal surfaces meet the constraining submanifold orthogonally,

and is a special case of “capillary surfaces”, which meet the constraining submanifold



at a constant angle, examples of capillary surfaces are the totally geodesic discs in
B" C R"(n > 1) and the spherical caps obtained by slicing the unit ball with a
hyperplane. Both examples are capillary stable ([52]), meaning the second variation
is non-negative with respect to some admissible variations (see section 1.2).

In this thesis we are focused on two problems with intertwining interest:

e rigidity results of free boundary minimal hypersurfaces in positively curved

manifolds with boundary;

e geometric estimates for manifolds with non-negative scalar curvature and uni-
formly mean convex boundary, using generalized stable capillary surfaces, called
“f-bubbles” (see chapter 4).

This thesis is organized as follows.

In section 1.2, we begin with some preliminaries that extend the notion of smooth
minimal surfaces to sets with finite perimeters that are critical points to some gener-
alized area functional, we compute the first and second variations and introduce the
Jacobi operator.

In section 1.3, we define “u-bubbles”, introduced by Gromov ([24]), and briefly
summarize some recent progress on scalar curvature using the p-bubble method.

In particular, Schoen and Yau’s proof of positive mass theorem (|56]) presented
the strength of minimal surface theory in application to the study of scalar curvature
and general relativity. The idea of “conformal descent” by Schoen and Yau can be
generalized to p-bubbles, and lead to resolution of important questions in geometric
analysis recently ([12], [13], [14], [29], [26], [69], [70], [68]).

In chapter 2, we prove rigidity results for stable minimal hypersurface in a compact
4-manifold with non-negative 2-intermediate Ricci curvature, positive scalar curva-
ture and weakly convex boundary (see section 2.1). An example of such a 4-manifold
is a weakly convex spherical cap. The result also holds for non-compact 4-manifolds
if we assume uniformly positive scalar curvature, and with weakly bounded geometry.
This extends the results of Chodosh, Li and Stryker (|15]) using the p-bubble method

for manifolds with no boundary. The main ingredients for the free boundary case is,



the use of weakly bounded geometry assumption to prove curvature estimates for sta-
ble free boundary minimal hypersurfaces and a volume bound for arbitrary balls with
fixed radius (see section 2.3); the use of intermediate Ricci curvature and 2-convexity
assumptions to prove a Liouville theorem for stable free boundary minimal hypersur-
faces (see section 2.5); and the use of free boundary p-bubbles (see section 2.6) to
prove the almost linear volume growth as of [15] for manifolds with no boundary.

In chapter 3, we will use generalized capillary surfaces to study the geometry of
3-manifolds with non-negative scalar curvature and uniformly mean convex bound-
ary (see section 3.1). We will prove that such 2-manifolds are discs with bounded
circumference and diameter (see section 3.2); the boundary of such simply connected
3-manifolds must have uniformly bounded 1-Urysohn width (see section 3.3); and
we will prove a sharp bandwidth estimate for bands over a surface with non-positive
Euler characteristic (see section 3.4).

In chapter 4, we prove rigidity results for stable free boundary minimal hypersur-
faces in a 4-manifold with the same assumption as in chapter 2, except now we don’t
require the positivity of scalar curvature, instead we assume uniformly positive mean
curvature of the boundary (see section 4.1). Instead of using the method of py-bubble
tailored for manifolds with positive scalar curvature, we use the tools we developed in
chapter 3, the method of “#-bubble” tailored for manifolds with non-negative scalar
curvature and uniformly mean convex boundary. We observe that such manifolds also
have the phenomenon of “conformal descent” and the tools we used for 3-manifolds
applies to general dimensions.

The main difference to chapter 2 is now that the method of #-bubble can only
control the 1-Urysohn width of the boundary of such simply connected 3-manifolds,
which is not enough to obtain intrinsic volume of a free boundary stable minimal
hypersurface (M3, 0M) < (X* 0X). We need to further exploit the stability in-
equality: we will show that each component of M must be non-compact and has
an end in the only non-parabolic end of M. This allows us to exhaust the only non-
parabolic end using #-bubbles, thus obtaining the same almost linear volume growth

as in chapter 2.



1.2 Preliminaries

In 1762, Lagrange found the Euler-Lagrange equation for a graph z = z(z,y) in R?

that minimizes area on any compact set,

, Vz B
div (\/T—Vz\z> =0 (1.2.1)

where z : D — R is a smooth function over a open smooth domain D C R2.

A graph satisfying the above equation (called “the Minimal Surface Equation”) is
a critical point to the area functional.

Lagrange found one solution, the plane. More and more interesting solutions were
found in the 19th century and afterwards.

The Plateau’s problem of finding an area-minimizing disc-type surface realized by
a smooth graph f € C*°(D)NC°(D), while f|sp is a weakly monotone parametrization
of a fixed smooth simple closed curve, was complete solved by Douglas and Rado
independently in the 1930s’.

Generalization of minimal surface theory to higher dimensions and general Rie-
mannian manifolds have been intensively studied. We are interested in the variational

viewpoint of the minimal surface theory.

Definition 1.2.1 (Admissible Variations). Consider a smooth immersions F': M —
X with OM C 0X if 0X # 0. we say a variation is admissible if it is a family of
immersions Fy : M x (=1,1) — X fort € (=1,1) that agrees with F att = 0 or
outside of any compact set and F,(OM;) C 0X; fort € (—1,1).

In this thesis, a minimal hypersurface is always a two-sided immersed hypersurface
M — X that is a critical point to the area functional with respect to all admissible
variations. Therefore, a free boundary minimal hypersurface (M, 9M) in a manifold
(X, 0X) with boundary is a critical point to the area functional among hypersurfaces

whose boundary remains in the boundary of the ambient manifold.

Lemma 1.2.2 (First Variation). We compute the first variation formula for a smooth

immersed hypersurface given vy, a choice of unit normal vector field along M and
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Y = %‘t:OFt(M>"

S

Area(M,) = / divy Y+ + / Y - vgn
M oM

:—/ H-Y+/ Y - vor,
M oM

where H is the mean curvature of M — X with respect to vyy.

t=0

Throughout the paper we use this convention of the second fundamental form,
I(Y,Z) = —(VzY,vy) given a choice of normal vector field vy, for a hypersurface
and V the Levi-Civita connection on the ambient manifold X. Then define mean
curvature as Hy; = tr(Il). In this convention, mean curvature of a sphere with outward
unit normal in the Euclidean space is positive.

By the first variation formula, an immersed submanifold M < X is a minimal
hypersurface if and only if its mean curvature vanishes everywhere. A free boundary
minimal hypersurface is equivalently a submanifold with vanishing mean curvature
and meets the boundary of the ambient manifold orthogonally (that is, the outward
unit normal of OM agrees with the outward unit normal of 9.X; so the second funda-
mental form of OM < M is the same as restriction of the second fundamental form
of 0X — X on TOM).

Lemma 1.2.3 (Second Variation). M is called stable if its second variation is non-
negative among such admissible variations.
Then given vy a choice of unit normal vector field along M, we have the following

stability inequality for any compactly supported Lipschitz function ¢ =Y - vy,

/ Voo > / (I + Ricx (var, var))8* + / Alorts )8,
M M

oM

where 1 is the second fundamental form of M — X and X the second fundamental
form of 0X — X and Ricx stands for the Ricci curvature of X.

We use the second variation of a (free boundary) minimal hypersurface M — X



to define the quadratic form Qp(f, f):

Quf.f) = /M A f — Riex (v var) + ) f2 + /8 O] = Al ).

The associated Jacobi operator of M is defined as,
Ju(f) == Anf + (Ricx (var, var) + [T f.
Using the Gauss-Codazzi equation Ry = Ry + 2 Ricx (var, var) + |2 — H?,
Ta(f) = Bagf + 3 (Bx — Bag + [P 4 H)S.
This relates the Jacobi operator of stability inequality to the conformal Laplacian,

LM(f)ZAMf—4n_2

T 1S

The technique of using stability inequality of minimal hypersurfaces to study scalar
curvature problem is called Schoen-Yau’s “conformal descent” (see section 1.3).

As we are interested in positively curved manifolds with boundary. We first in-
troduce more precisely the curvature conditions for ambient manifolds, and adopt
the non-standard short phrase “weakly bounded geometry” given in Franz (|21]) to

indicate we consider Riemannian manifolds (M, 0M, g) with the following,

e cither the scalar curvature of M is uniformly positive (Ry; > Ry > 0), and the

mean curvature of M is non-negative (Hyys > 0) with no minimal components;

e or the scalar curvature of M is non-negative (R, > 0), and the mean curvature

of OM is uniformly positive (Hgy > Hy > 0).

This notion is consider “weakly positive geometry” as compared to the “positive geom-
etry” conditions when the Ricci curvature is assumed to be positive or non-negative.
Examples of such manifolds include the spherical caps (the first case of “weakly

positive geometry”) and the Euclidean balls (the second case).



Capillary hypersurfaces have proven useful to study comparison theorems in man-
ifolds with non-negative scalar curvature and uniformly mean convex boundary (see
for example [40],[9]).

Definition 1.2.4 (Capillary surfaces). A capillary hypersurface is the boundary of a
smooth open set  in a compact Riemannian manifold (N,0N) that is a critical point

to the following functional,

Ao(2) = Area(092) — / cos b,

ONNQ

for a constant 0 € (0,7), and among admissible variations with fixed volume ratio

_ 1l
Ao = 17

The first variation formula for capillary surfaces gives an equivalent definition: a
capillary surface has constant mean curvature and constant intersection angle with
the ambient boundary. In particular, a free boundary minimal surface is a capillary

surface.

Lemma 1.2.5 (Second variation, [52|). A stable capillary hypersurface ¥ has non-

negative second variation among admissible variations:

d
0< —
—dt

Ao() = /2 V6|2 — (Ric(vs, vs) + [Ts[2)6?
¢2

o sin 0

t=0

(Ipn (7, 0) — cos Ol (v, v)),

for any ¢ € CX(X); here vs the outward pointing unit normal of ¥ — Q, I stands
for the corresponding second fundamental forms, and v (respectively v) stands for the

outward unit normal of 0¥ — QN ON (respectively 0% — X).
These definitions and calculations can be generalized to sets with lower regularity.

Definition 1.2.6 (Sets with finite perimeters, [46]). An open set E has locally finite
perimeter (also called a “Caccioppoli set”) in an open U C R™, if and only if for any
K ccU,

sup{ divg: ¢ € CF(K,R"), [|¢]lo < 1} < 0.

KNE



An open set E has locally finite perimeter in V NH, for V an open set in R"™, if and
only if £ is an open set with finite perimeter in 'V, and £ C H,.

Equivalently, E has locally finite perimeter, if and only if the distributional deriva-
tive Vg is a Radon measure pg. The first improved regularity we can get from sets
with finite perimeters is that the support of ug is an n — 1 rectifiable set called the

“reduced boundary”.

Definition 1.2.7 (Reduced Boundary, [46]). The reduced boundary O*E of a set E

with locally finite perimeter is,

i S : lim M = VE\T or some Vgl\T n—l
{o€pttue) : i TN () for some ve(a) € 57}

Theorem 1.2.8 (De Giorgi Structure Theorem, [46]). If E has locally finite perimeter
in U, then O*F 1is rectifiable and,

O*E» |,U/E| - H?’L—l

-1
HE = vgH" O*E-

And we can integrate by parts in the following sense,

/w: ¢-vp, Vo€ XU,
E o*FE

Using a partition of unity, one can define Caccioppoli sets in a Riemannian man-

ifold with or without boundary analogously.

1.3 Scalar Curvature and p-Bubbles

As we mentioned in section 1.2, the Jacobi operator allows us to use stable mini-
mal hypersurfaces to study the geometry of the ambient manifolds, in particular to
problems related to scalar curvature.

Schoen and Yau in particular used the method of “conformal descent” of positive
scalar curvature metric (PSC) to stable minimal hypersurfaces in a PSC manifold, to

prove the following conjecture.



Theorem 1.3.1 (Geroch’s Conjecture, [25],[54],[53]). The connect sum T"#X when

X is any closed manifold, has no metric of positive scalar curvature.

The resolution of Geroch conjecture also leads to important applications in general

relativity.

Theorem 1.3.2 (Positive Mass Theorem, [53|). Let (M™, g) be an asymptotically flat
manifold with R, > 0, 3 < n <7, then its ADM mass my > 0, and my = 0 if and

only if M is isometric to the Euclidean space.

In the proof of Theorem 1.3.1, Schoen and Yau utilized the existence and regular-
ity (in dimension n < 7) of area minimizing minimal hypersurfaces in a non-trivial
homology class.

While it is not always possible to find stable minimal hypersurfaces in an arbitrary
manifold (e.g. when the manifold is contractible so the homology classes are trivial),
the idea of conformal descent can be applied to a generalized notion of minimal

hypersurfaces, called p-bubbles.

Definition 1.3.3 (Gromov [24], [26]). A p-bubble in a Riemannian manifold (M™, g)

1s a set of finite perimeter that minimize the following functional,

An(Q) = H 10" Q) — / h(xa — Xa0),

M

given a smooth function h : M — R and a fized smooth domain 2y C M.

We note that in the case h = 0, a pu-bubble is area minimizing. Using regularity
for almost area minimizing hypersurfaces ([61]), if 3 <n < 7, a u-bubble is a smooth
submanifold. The first variation formula of Aj(-) implies Hy, = hls, so A(+) is also
called the “prescribed mean curvature” functional.

We have the following second variation formula for u-bubble,

Lemma 1.3.4 (Second Variation, [13]). Assume € is a smooth u-bubble in M and

denote ¥ = 0*C), then given any normal variation generated by X; = ¢vs, with vs



the outward pointing unit normal of ¥ C  and ¢ € CX (%),

d
0<— A() = / Vol* — (Rica(vs, vs) + [Is]*)¢” — ¢*V, 1
b

t=0

1
= [ V67 = (Rar = R+ Ll + H)6" — Vs
%

n+1h2>

1 2 2
g/2|v¢y2—§(RM—Rz)¢ — P (Vogh +

Using p-bubbles, Gromov proved the following sharp bandwidth estimate for an

over-torical band.

Theorem 1.3.5 (Bandwidth Estimate, [30]). Let M ~T" x [-1,1](2 < n <6) be a

Riemannian manifold with scalar curvature Ry > n(n + 1), then

2
n+1

dp (T x {—=1},T" x {+1}) <

We know from Bonnet-Meyers theorem that a surface with uniform PSC has
uniformly bounded diameter. What can we say about 3-manifolds with uniformly
PSC?

Topologically, we can characterize a compact 3-manifold with uniform PSC us-
ing the work of Gromov and Lawson (|25]), the resolution of Poincaré conjecture
by Perelman (]|49],[50],[51]). For complete non-compact manifolds, characterization
results were obtained by Chang, Weinberger and Yu ([10], assuming contractibility)
and Bessiéres, Besson and Maillot ([5], assuming bounded geometry), Wang ([62],

removed the assumption of bounded geometry).

Theorem 1.3.6. A complete 3-manifold with uniformly positive scalar curvature must

be (possibly infinitely many) connect sums of S* x S' and space forms.

Quantitatively, 3-manifolds with uniform PSC is close to being 1-dimensional as

proven by Liokumovich-Maximo and Liokumovich-Wang.

Theorem 1.3.7 (Waist Inequality). Let M be a complete 3-manifold with Ry >
Ry > 0, then there is a proper Morse function f : M — R and Ay > 0,dy > 0 such

10



that for any t € R, each connected component T' of f~1(t) has,
diamy(T) < dg, Area(T") < Ay.

Another way to give geometric estimates of PSC 3-manifolds is through Urysohn
widths bound.

Definition 1.3.8 (Urysohn Width). A metric space (X,d) has k-Urysohn width
bounded by dy > 0 if there is a continuous map to a (connected) k-dimensional sim-

plecial complex G, such that
diamg(f(9)) < dy, Vg€ QG.

Using Bonnet-Meyers, we know that uniformly positive Ricci lower bound implies
a uniform upper bound on 0-Urysohn width: the diameter.
Gromov made the following conjecture that uniformly positive scalar curvature

gives codimension 2 control of the growth of a Riemannian manifold.

Conjecture 1.3.1 (Gromov [24]). If M is a complete n-dimensional Riemannian
manifold with Ry; > Ry > 0, then the n — 2 Urysohn width of M is bounded from

Cn

above by T

For example, consider any closed Riemannian manifolds M"™ and the connect sum
M x S?(r), if r is sufficiently small then M x S*(r) has uniform PSC and has n — 2
Urysohn width bound.

The method of p-bubble allows Chodosh and Li to give a very concise proof on

Urysohn widths bound for simply connected 3-manifolds.

Theorem 1.3.9 (Chodosh-Li, [13]). If (M, g) is a simply connected 3 manifold with
R, > 2, then the 1-Urysohn width of M is bounded from above by 12m. Furthermore,
there is a continuous map f: M — T where T is a 1-dimensional simplicial complex

with no loops (a tree), such that diam,(f~'(t)) < 127 for anyt € T.

We note that Gromov’s conjecture 1.3.1 for manifolds with dimension 4 or higher

is still widely open.

11



The resolution to the 1-Urysohn width bound to non-compact simply connected
3-manifolds has two important consequence. The first one is two directions of gener-

alization of Geroch conjecture.

Definition 1.3.10. A topological manifold N is aspherical if the one of the following

equivalent condition holds,

e the universal cover N of N is contractible;

e the higher homotopy groups m(N) for k > 2 vanishes.
Theorem 1.3.11 (Chodosh-Li, [13|). Eztending Geroch conjecture:

o Closed aspherical manifolds of dimension 4 or 5 have no complete smooth metric

of positive scalar curvature;

e The connect sum of an arbitrary manifold X™ and the torus T™ does not admit

a complete smooth metric of positive scalar curvature.

We note that in the proof of Schoen and Yau, T"#X has no PSC when X is
compact, the authors use “conformal descent” of scalar curvature and take advantage
of the abundance of homology in T". The torus T" is aspherical. While in the proof
of Chodosh and Li, the authors pass to the universal cover, which has no topology
to make use of. It’s the introduction of pu-bubble that allows the idea of “conformal
descent” to still be applied in such a situation.

In another direction, Chodosh, Li and Stryker proved that each end in a simply
connected 3-manifolds with PSC has linear volume growth, allowing them to obtain

rigidity results for stable minimal hypersurfaces in a positively curved 4-manifold.

Theorem 1.3.12 (Chodosh-Li-Stryker, [15]). Consider (X*, g) with weakly bounded
geometry and
Ricy >0, Rx > Ry > 0.

Then any complete two-sided stable minimal hypersurface M? — X* must have
|]IM‘ = 0, RiC(VM, l/M) = 0,

12



for vy a choice of unit normal along M.

Here the condition Ricg( > 0 is an intermediate curvature assumption that lies
between sectional curvature and Ricci curvature, see chapter 2 for the definition and
explanations of why this is a reasonable assumptions for rigidity results of stable

minimal hypersurfaces in 4-manifolds.

13



Chapter 2

PSC 3-Manifolds and Free Boundary
1-Bubbles

This chapter extends the method of Chodosh-Li-Stryker ([15]) to free boundary min-
imal hypersurfaces in ambient manifolds with boundary.

Precisely, we show that the combination of nonnegative 2-intermediate Ricci Cur-
vature and strict positivity of scalar curvature forces rigidity of two-sided free bound-
ary stable minimal hypersurface in a 4-manifold with bounded geometry and weakly
convex boundary.

The results in this chapter come from [65].

2.1 Introduction

Recall the second variation formula in Lemma 1.2.3.

Using the stability inequality, the positivity of the curvature tensor of the ambient
manifold X™ has been exploited to obtain rigidity or non-existence results of stable
minimal (free boundary) hypersurfaces. When X" has non-negative Ricci and M is
closed, then M must be totally geodesic (|59]) and the Ricci curvature must vanish in
the normal direction along M (in particular, strictly positive Ricci curvature implies
non-existence of stable minimal hypersurfaces); when X" has positive scalar curvature
(PSC) and M is closed, then Scheon and Yau proved M must also has PSC ([53],[54]).

14



See [15] for a more complete review of the literature.

While if the ambient manifold is non-compact, to use the same method, we need
to bound the volume growth of the minimal hypersurface.

For a surface in a 3-manifold, if the scalar curvature has Rx > 0 and 0X = (), then
Fischer-Colbrie and Schoen proved M with the induced metric is either conformal to a
plane or a cylinder, and the later case implies that M is totally geodesic, intrinsically
flat, Rx|y = 0 and Ricx (var, var) = 0 along M (|20]). Furthermore, if Ry > 1, then
M must be compact ([55],]25]), and also admit a metric of PSC. The idea that the
positivity of scalar curvature can be “inherited” has seen many fruitful applications
([56], [13]).

In higher dimension, the following two examples in [15] explain analogous results to
the case of compact minimal hypersurfaces cannot be obtained via the local variational

method:

e there is a stable totally geodesic embedding of R? — (R?, g) where (R?, g) has

strictly positive sectional curvature everywhere;

e there is a stable totally geodesic embedding of M3 — X* where X has uniformly

positive Ricci curvature in a tubular neighborhood of M?3.

This explains the assumption of intermediate Ricci curvature Ric; > 0 in Cho-
dosh, Li and Stryker [15]. Apart from the result in [15] using the method of p-bubble
to give an almost-linear volume growth bound for an end of a stable minimal hy-
persurface in a non-compact 4-manifold as in Theorem 1.3.12, we note that recently
Catino-Mastrolia-Roncoroni [8] has given rigidity results of complete stable minimal
hypersurfaces in R* or a positively curved Riemannian manifold X" when n < 6,
where the authors look at a suitable positive curvature condition introduced by Shen
and Ye ([57]).

For an ambient 4-manifold (X,0X), we say X has weakly convex boundary if
the second fundamental form of the boundary is positive semi-definite. The so-called
non-negative “2-intermediate Ricci curvature” assumption, denoted as Ricy > 0, lies

between non-negative sectional curvature and non-negative Ricci curvature, and will
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be explained in section 2.2. The author obtained analogous results to [15] for free

boundary minimal hypersurfaces.

Theorem 2.1.1 (|65]). Consider (X* 0X) a complete Riemannian manifold with
weakly convex boundary, R > 2, Ricy > 0, and weakly bounded geometry. Then any
complete stable two-sided immersion of free boundary minimal hypersurface (M,0M) —
(X,0X) is totally geodesic, Ric(n,n) =0 along M and A(n,n) = 0 along OM, forn

a choice of unit normal over M.

In particular, any compact manifold (X4, dX) with positive sectional curvature
and weakly convex boundary will satisfy the assumption above. This gives the fol-

lowing nonexistence result:

Corollary 2.1.2. There is no complete two-sided stable free boundary minimal im-
mersion in a compact manifold (X*, 0X) with positive sectional curvature and weakly

convex boundary.

We will note two aspects that are mainly different from the case without boundary
in [15] and require new ingredients.

The first is the notion of parabolicity and non-parabolicity for an end E of man-
ifolds with non-compact boundary, where we need to look at a (weakly) harmonic
function f with mixed (Dirichlet-Neumann) boundary conditions on two different
parts of the boundary OF = 0yF N 01 F. Standard elliptic regularity tells us that f
is smooth away from the points of intersection dyE N 01 E. By the work of Miranda
[47] we can see that f is continuous (and bounded) around each point of intersection.
Then the work of Azzam and Kreyszig [3| gives that if the interior angle of intersec-
tion 6 is small, then f is C*® for k and o depending on #. This allows us to control

the number of non-parabolic ends of M.

Theorem 2.1.3. Let (X*4,0X) be a complete manifold with Ricy > 0, Ay > 0, and
(M,0M) a free boundary two-sided stable minimal immersion with infinite volume,

then for any compact set K C M, there is at most 1 non-parabolic component in
M\ K.
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Here we write A as the second fundamental form of 0.X in X, then Ay > 0 is an
intermediate assumption lying between convexity and mean convexity, which will be
explained in Section 2.2.

The second ingredient is the bound of volume growth on a ball of fixed radius
in M. In [15], since M has no boundary, with a uniform lower Ricci bound, we can
obtain volume bound via Bishop-Gromov volume comparison theorem. To apply the
same for the free boundary case, one can exploit the assumption that X has convex
boundary. On the other hand, we can actually use the weakly bounded geometry
assumption (that is already needed if one needs to apply blow-up argument to an

arbitrary non-compact Riemann manifold).

Lemma 2.1.4. Let (X", 0X,g) be a complete Riemannian manifold with weakly
bounded geometry at scale Q, and (M" ', OM) < (X,0X) a complete immersed
submanifold with uniformly bounded second fundamental form, then the following is

true,

e there is 0 < N < oo such that for any p € M, the mazximum number of disjoint

balls of radius § centered around points in Bif(p) is bounded by N,

e for any R > 0, there is a constant C' = C(R, Q) such that the volume of balls
of radius R around any point in M is bounded by C'.

Proof of the lemma used an inductive covering argument in Bamler-Zhang [4].

Preliminaries and outline of the paper is given in Section 2.2.

2.2 Preliminaries

Recall for a free boundary minimal immersion (M,0M) — (X,0X), we write I for
the second fundamental form of M — X and A for the second fundamental form of
0X — X.

We now introduce the curvature assumptions we made on the ambient manifolds
(see also [15]).
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Definition 2.2.1. We say that X has Ricy > 0, i.e. nonnegative 2-intermediate Ricci
curvature , if
R(v,u,u,v) + R(w, u,u, w) > 0, (2.2.1)

for any x € X and any orthonormal vectors u,v,w of T, M, where R(-,-, -, -) represents

the Riemann curvature tensor of X.

Remark 2.2.2. Note since Ric is symmetric, as long as the dimension of X 1is at
least 3, Ricy > 0 implies that Ric(u,u) > 0 for any vector u in the tangent plane of
X and so Ric > 0 everywhere.

Using Ricy > 0 of the ambient manifold and Gauss Equation, we can control the

Ricci curvature from below by the second fundamental form of a minimal immersion.

Lemma 2.2.3 ([15], Lemma 2.2). Consider (M?3,0M) — (X*,0X) immersed free
boundary minimal hypersurface, if X has Ricy > 0, then

Ricy, > — |12 (2.2.2)

Remark 2.2.4. The proof works in other dimensions too, the same conclusion holds
for all X™ with n > 3. When n = 3, we would need X to have positive sectional
curvature. Ifn > 4, we only need the following weaker assumption named Ric,_o > 0,

meaning for any orthonormal vectors ey, ...,e,_1 at a tangent plane of X, we have

=

n—

R(eg,e1,e1,ex,) > 0.
2

£
[|

We can in fact get a sharper bound with a constant depending on the dimension.

Lemma 2.2.5 ([15], Lemma 4.2). Consider (M"™',0M) — (X",0X) immersed free

boundary minimal hypersurface, if X has Ric,_o > 0, then

n—2

RICMZ—
n—1

|2 (2.2.3)

We also define an analogous “2-convexity” condition for 0X — X, lying between

convexity and mean convexity.
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Definition 2.2.6. For (X,0X) a complete manifold with boundary, recall A is the
second fundamental form of 0X — X, we say that Ay > 0 if for any orthonormal

vectors ey, e3 on a tangent plane of 0X, we have A(ey,e1) + A(es, e5) > 0.

The condition of “2-convexity” and Ric; > 0 will be useful combined with the
stability inequality to obtain a Liouville theorem for stable minimal hypersurfaces in
X*, see section 2.5.

Also, to obtain blow up analysis needed for curvature estimates of stable minimal
hypersurfaces in an arbitrary ambient Riemannian manifold, we require (X, 0X) to

have weakly bounded geometry, defined as below.

Definition 2.2.7. We say a complete Riemannian manifold with boundary (X,0X, g)
has weakly bounded geometry (up to the boundary) at scale Q, if for this Q > 0, there
is o € (0,1) such that for any point x € X,

e there is a pointed C** local diffeomorphism ® : (Bg-1(a),a)NH — (U, z) C X,
for some point a € R", here H, is the upper half space in R";

e and if X NU # (), then @1 (0X NU) C IH,.

Furthermore, the map ® has,
o ¢ 29g) < ®*g < e*?gy as two forms, with gy the standard Fuclidean metric;
o [[0kD*gijl|ce < Q, where 4, j, k stands for indices in Euclidean space.

We will prove two consequences of this condition in the next section: one is
the curvature estimates for stable free boundary minimal hypersurface following the
resolution of stable Bernstein theorem of Chodosh and Li [14],[12]- any two-sided
complete stable minimal hypersurface in R* is flat; the other is a volume control of
balls of fixed radius by a constant depending on the coefficient () in the definition
above.

Until now we don’t really need to restrict the ambient manifold to dimension 4.
However, the dimension restriction is essential to the following theorem, where the

p—bubble technique is needed to get a diameter bound using positive scalar curvature.
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Theorem 2.2.8. Consider (X*,0X) a complete manifold with scalar curvature R >
2, and (M,0M) — (X,0X) a two-sided stable immersed free boundary minimal hy-
persurface. Let N be a component ofm for some compact set K, with ON =
N UON,0oN C OM and O,N C K. If there is p € N with dy(p, 1 N) > 10w, then
we can find a Caccioppoli set Q C Bior(01N) whose reduced boundary has that: any
component 3 ofm has diameter at most 2 and intersect with dyN orthogo-
nally.

2.3 Curvature Estimates and Weakly Bounded Ge-

ometry

We start with the first consequence, curvature estimates for free boundary stable

minimal hypersurface in manifolds with weakly bounded geometry.

Lemma 2.3.1. Let (X", 0X,qg) be a complete Riemannian manifold with weakly
bounded geometry, and (M" ' OM) — (X,0X) a complete stable immersed free

boundary minimal hypersurface, then

sup |I(g)| < €' < o0,
qeEM

for a constant C'= C(X, g) independent of M.

Proof. We follow the proof as given in [15]. We prove that for any compact set

K C M, we have the following curvature estimates:

m%?cﬂl(q)] min{1, dy (¢, K)} < C < o0, (2.3.1)
qe
with OM N K = 0pK and 0K \ OM = 0, K,

Towards a contradiction, assume there is a sequence of compact sets K; C M; <
X the latter being a complete stable immersed free boundary minimal hypersurface,
and

max |I;(q)| min{1, dps,(q, O K;) } — o0. (2.3.2)
qeiy
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Then by compactness of K; we can find p; € K; \ 0, K; with

|IL; (p;)| min{1, das, (pi, 1K)} = max |I;(q)| min{1,dp;,(q, 01 K;)} — c0.  (2.3.3)
Define r; := |I;(p;)|~" — 0 and z; the image of p; in X. Using the weakly bounded
geometry assumption and a pullback operation as in [15] Appendix B, we can find a
sequence of pointed 3-manifolds (.5;, s;), local diffeomorphisms ¥, : (S;, s;) — (K, p;)
with the boundary components mapped correspondingly V;(0,S;) = 9,K;(l = 0,1),
and immersions F; : (S;,s;) < (B(a;, Q7') NH,, a;) so that the following diagram
commutes (writing B; := B(a;, @ ')NH,), and that F; : S; — (B;, ®fg) is a two-sided

stable minimal immersion, in the free boundary sense along 0yS; but not 0,.5;,

S;—> B,

Note that in the weakly bounded geometry condition we may also require the
Euclidean norm of a; is no more than Q.

We can now consider the blow-up sequence

A A

Ey: (Si,s) = (By,a;), Bi = Blag,r;'Q™ ') NH, with metric r; 2®%g. (2.3.4)

By assumption of weakly bounded geometry, (Bz, a;) converges to the Euclidean met-
ric in C® on any compact sets. We now consider S; with metric induced from ﬁ’z
By the point picking argument, for any point ¢ in a ball of fixed radius R > 0 around
si, we have a uniform bound on |Ig (¢)] < C(R). The weakly bounded geometry
condition then gives |IIg,(¢)| < C'(R) for the immersion F' : (S;,s;) — (Bi,a;), the
latter with Euclidean metric go. This allows us to write a connected component of
BYi(q) as a graph of a function f; over a subset B,(0) NH; of T,S; for some i, > 0,
here B,(0) is the Euclidean ball and H; is some halfspace in R® that may not go
through the origin.

Now following the same argument as in [15], we know that the functions f; have

21



uniformly bounded C*® norm. To continue the argument as in [15], we can extend
the graph f; from B,.(0) N H; to all of B,(0) and f; still has uniformly bounded C*
norm (but the extended part is not minimal as a hypersurface in BZ) This gives
us that on any bounded set, (S;, s;) has injectivity radius bounded away from 0 and
bounded sectional curvature, with respect to the metric (F;)*(r; 2®%g).

Then we can use the same argument in [15] and pass to the limit, to get a subse-
quence converging to a complete minimal immersion (S., So) in R*, or one that is
minimal on Hy and that intersect the OH. orthogonally, furthermore |l (so0)| = 1
(note that under this blow-up sequence, II;(s;) = 1 by the choice of r; and dg, (s;, 8;.5;) —
o0). In the latter case we can use reflection principle (see for example Guang-Li-Zhou
[32]) and reduce to a complete minimal immersion in R?*, which is a contradiction
to the result of Chodosh and Li ([14],[12])- any complete two-sided stable minimal
hypersurface in R* is flat. O

Remark 2.3.2. The pullback operation in [15] applies to open manifolds without
boundary(an interior ball of small radius in K; near p;), in our case for the proof
above, we need to extend over the free boundary part of this small ball, apply [15]
to the extended open manifold and one can check that we still get a free boundary

immersion near 0yS;.

Now we prove the following volume control theorem for a manifold with weakly
bounded geometry. This argument follows as in Lemma 2.1 in Bamler-Zhang [4]. In
this paper given an immersion M < X, we write the intrinsic distance function as

d(+, ) and extrinsic distance function as dx(-,-).

Lemma 2.3.3. Let (X", 0X,g) be a complete Riemannian manifold with weakly
bounded geometry at scale Q, and (M"Y OM) < (X,0X) a complete immersed

submanifold with bounded second fundamental form, then the following is true,

o there is 0 < N < oo such that for any p € M, the mazximum number of disjoint

balls of radius § centered around points in B3 (p) is bounded by N,

e for any R > 0, there is a constant C = C(R, Q) such that the volume of balls
of radius R around any point in M is bounded by C'.
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Proof. To prove the first claim, we first prove that there is a fixed 0 < ryp < Q7!
such that for any point p in M, we have for any r < ro, W(B2(s)) = BM(p), here ¥
comes from applying the pullback operation as in the previous lemma, i.e. we have
the following commutative diagram, with local diffeomorphism ¥ : (S,s) — (M, p)
and immersion F' : (S,s) = (B, a), with B = Bg-1(a) N H,,

(S, 5) —— (B, a)

g |s

(M, p) — (X, z)

Note since image of any path in B?(s) is again a path in BM(p) and ¥ is a local
isometry, we have U(B2(s)) C BM(p). To prove the other direction, we look at a point
q connected to p by a shortest path of unit speed I(¢t) : [0,]] — M (Il < r) , again since
U is a local isometry we can find a path in .S with unit speed J(t) : [0,¢] — S, J(0) = s,
that is mapped isometrically to I under W. Writing Im(7) for the image of I(¢) in
M, we note that the preimage ¥~!(Im([/)) is a union of paths in S since ¥ is a local
isometry, one of the component must contain J(¢), which we denote as J(t) from now
on. The length of J (denoted as t¢) is at least [, since if not, then as t — o, V(J(¢))
converges to a point on the path I(t), whose preimage in J still lies in B(s) and can
be used to extend J longer. Therefore J must also reach a preimage of ¢ at length
[ <r. Sowe get BM(p) C W(B3(s)).

We now prove the first claim. Let 85 < ry, then we have that W(Bg;(s)) = BM(p)
by the above proof. For any disjoint balls B (p;) with p; € B (p), we must have
s; € B5(s), so that W(B5)(s;) = BM(p;), therefore Bj (s;) are disjoint.

Note that S — B also has bounded second fundamental form, and the weakly
bounded geometry assumption says the pullback metric via ® is comparable to the
Euclidean metric as two forms, which implies that the volume of Bgs(s) is bounded
above by C6"~1, and the volume of Bf(s;) is bounded from below by C’6"~* for some
constant C,C" depending on (here we may choose ry to be even smaller depending
on the second fundamental form). Therefore, the number of such points s; is bounded

by a fixed constant N, and so is the number of p;.
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We now prove the second claim. We want to bound the volume of B (p) for any
given R > 0 and any p € M, and we may assume R > 19 > 85. Let (BY(p;))r, be
a choice of pairwise disjoint balls with centers in BM(p) and with the maximum &
(k < N). By maximality,

Bis (p) € Uiz1 Bas (pi)- (2.3.5)

We now argue that for all r > 49,
Bagy,(p) C U BM (ps). (2.3.6)

Consider a point y € B3], (p), and a path y(¢) (reparametrized by arc length) from
p to y with length | < r + 2. Then by (2.3.5) there is some point p; so that
v(46) € BM(p;). We have,

d(pi,y) <1 —46 4+ d(v(46),p;) <1—26 <,

completing the proof of (2.3.6).

We now prove by induction that for any £ > 2 and any ¢ € M, the volume of
B2, (g) is bounded by a constant C* with C' = C(Q, N,d). For k = 2, this is already
proved in the first claim. Now assuming the claim is true for some k > 2, then using
(2.3.6) for r = 20k gives,

| B3(s1)5(q)] < NC* < O

Choosing k large enough we can bound the volume of B¥ (q) for any given R > 0. [J

2.4 Parabolicity on Manifolds with Boundary

Given a manifold with boundary (M",0M), and any continuous submanifold E™,
recall we reserve the notation OF to denote the manifold boundary of F (instead of as
a subset in M ). Therefore we can decompose OE = 0y EUJyFE where OgFE = OENOM
and 0,F = OE \ OM. And we say that 0, E N 0yE at an angle 8(z) € (0,7), if for
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any x € Oy E N OyE the hyperplane 7,00 F and T,0oE intersect at angle 6(z) in the
interior of E. In this paper we only consider domains F in M that are smooth except

at the intersections 01 F N JyE, we call these points corner points.

Definition 2.4.1. Consider (M™,0M) complete manifold with noncompact boundary.
An end of (M,0M) is a sequence of complete continuous n-dimensional submanifold
(Ek)k>0 with boundary, where each Ey, is a noncompact connected component of M\ Cy,
for compact continuous submanifold Cy C Cyy1, and Eyxyq C Ej.

When Cy = Cri1 = Kand Ey, = Ey1 = E for all kK > 0, we will also call E an

end with respect to the compact set K.

Definition 2.4.2. For any end E of M, we say that OF intersect with the boundary
OM transversally (or at an angle 0(x) € (0,7)) if O E and 0, E intersect transversally
(or at an angle 0(x)) as submanifolds in M, that is, for any point v € O\E N E, the
tangent planes T,00E and T,0.E are not equal (or at an angle 0(x)).

In the following theorem we show how we can purturb the angle of intersection of

an end in an arbitrarily small neighborhood.

Theorem 2.4.3. Consider (M™,0M) complete orientable manifold with noncompact
boundary and let dy;(p, -) be the continuous distance function from a fized point p € M
(we will mollify it to be smooth on a compact set in M without changing the notation).
Then for almost every ¢ > 0, the preimage E. = dy; ([c,00)) is a submanifold with
boundary and intersects with the boundary OM transversally. Furthermore given any
6 > 0 and constant 0 € (0,%5), we can find another continuous submanifold E within

the d-neighborhood of E. so that the angle between the tangent planes T,01FE and

T,.00FE is equal to 0. The submanifold E is smooth except at the corners.

Proof. We first consider the continuous distance function h = dy(p, -), for any N > 0
and any § > 0, there is a mollification h such that h is smooth on B (p) and
Ilh — B||LM(BIJ\V4(IJ)) < 0/2. Then it is a standard proof (see for example in [33] section
2.1) that for almost every 0 < ¢ < N, the map dh, : T,M — R and the map
dh, : T,0M — R are both nonzero, and the preimage E. = h™([c, 00) is a continuous

submanifold intersecting OM transversally and is smooth except at the corners. We
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now show that we can purturb to arrange the angle of interesection to be any constant
0 € (0,Z) in a $—neighborhood of E...

We denote the intersection OM N OFE,. =: I, note [ is orientable because it’s the
preimage of the regular value s of the function d(p,-) restricted to the boundary
by [38] Proposition 15.23. Using a unit normal vector field p of I C 9OM that is
outwarding pointing with respect to E., we find a local coordinates (z,t) within the
§’—neighborhood of I C OM(d’ to be decided), here (z,t) means (z,0) € I and (z,1)
stands for the point exp?%) (tp)(the exponential map on dM). Now similarly using
the outward pointing unit normal v of OM C M, we build a local coordinates denoted
as (z,t,r) = expé\;{t) (rv). Denote the projection map onto the last coordinate r as
P.: E. — R, then 0 is a regular value of P, because if dP.(z) : T,E; — R is zero
for some point x € I = P71(0), then T,E, C T,0M, contradiction to the transversal
intersection of them we just proved. Further note dP, is zero restricted to T,0M,
espeically in the directions on T,I. Now fix a point (zp,0,0) € I, and consider the
slice S,, = {(z,t,r) € E.,z = z} in the rt—plane, then P, restricted to S,, has
that dP, is nonzero around a neighborhood of origin, so the tangent line along S,
is never parallel to the ¢-axis in this neighborhood, meaning we can write S, as a
graph (zo, t(r),r) in this neighborhood (the function ¢(r) = t,,(r) also depends on z,
but we omit the notation).

Now we can concatenate the graph ¢(r) with the linear map #(r) = tan(0)r, at
r = 0" for some 0" < &, to get a new function #(r) with jump singularity at r = 6",
and using a bump function ¢(r) supported near the singularity, we have the function
t(r)(1—¢(r)) gives the graph bounding our desired E together with E,. Given a fixed
¢ € (0,%), we can choose ¢’, 6" small enough so that the modification happens within

the %—neighborhood of F.. O

From now on, in this section we will mostly follow the discussion in [15] where the

case is for manifolds without boundary.

Definition 2.4.4 (Parabolic Component). Let (M™,0M) be a complete Riemannian
manifold with noncompact boundary, and E an end with respect to some compact K.

We say that E is parabolic if there is no positive harmonic function f € C**(E), for
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some a > 0, so that,

Eo<17

f‘ﬁlE =1 an|aoE =0, f

with v the outward pointing unit normal of OM .

Otherwise we say that E is nonparabolic.

We note that if F is nonparabolic, then there is a harmonic function f on E that is
C?“ across the corners, in the sense that it can be extended to an open neighborhood
of Ein M.

We first deal with the regularity issue arising in the above definition. That is,
when 01 E N OyE # 0, a weakly harmonic function over E may not lie in the class
C?(E) or even C'(E). The following theorem says that if we purturb the angle of

intersection of 01 ' N JyE to be small, we will have enough regularity.

Theorem 2.4.5. Consider a connected compact Riemannian manifold with boundary
(K,0K = W KUQK), and 0, K intersect with 0y K transversally as smooth codimen-
sion 1 submanifolds, with constant angle 6 € (0,7/4) contained in K. We write v
as the outward pointing unit normal at each boundary (v exists almost everywhere,
i.e. except at the corner points). Then a weakly harmonic function f € WH(K)
with prescribed boundary condition: flo,x = glo,x, and V,flo.x = Vugla,x with
g € C**O)(K), is also C**9 for some fived a(0) > 0.

Proof. The function u = g — f satisfies Au = Ag =: h and has Dirichlet boundary
condition over J; K and Neumann boundary condition over dy /K. Then u is the unique

solution to the following problem, in a complete subspace of W?(K), namely

/Vu-qu:—/hgb, Vo € C(K \ 9, K),
K K

over the set § := {u € W'?(K), u|s,x = 0}.
We note that a unique solution exists by Lax-Milgram, and we have that the W2

norm of the solution w is finite since,
/ Vu-Vu= —/ hu < ||h||z||u|lzz < C||h| 2 ||Vl 2,
K K
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where in the last step we used Poincaré inequality since ulsg,x = 0 (1K # 0).
So away from the corners we can continue with standard iteration scheme (see for
example [19], [1] and [23]) to get for any k € N, |[ul|gx < C’||u||gr < C(h, K), where
|ul|gr == [|V*ul| 12(x). We briefly write the process using partition of unity here.

Given any interior ball B, C Br C K° consider a bump function supported on
Br and ¢ = 1 on B,. Then A(¢u) = (Ad)u+2Vu - Vo + ho € L?, so we have that
lloul| gz < C'(||A(pu)||z2 + |Jullgr) < C(R, 7, h)||u||g:. Differentiating the equation
again and iterate the process, we get the claimed bounds on H* norm of u on B,. So
we can get Cp2 bounds on any compact set in the interior.

A similar process holds if B, C Bpg are balls centered around a boundary point
BrN9yK = . Consider ¢f with ¢ compactly supported in By but is equal to 1 on
B, (including points on the boundary), look at ¢u on By (and flatten the intersetion
of B and 0; K, this is not an issue since we only want to bound u in B,). Then the
same process as above applies using boundary estimates.

For purely Neumann condition a similar treatment holds. We need to choose
bump functions ¢ supported in boundary coordinates charts, so that on the boundary
of Bg, » = 1,0,¢ = 0, to make sure 9,(¢f) = 0 on the boundary of Br (again we
flatten the intersection of Br and 0y K). Then using boundary estimates for Neumann
conditions, we again have the above property.

If Bp is a ball centered around a point on the corners: 0; K N0y K, we have Au = h
on Bpg, using normal coordinates for small r, the function u solves a uniformly elliptic
nonhomogeneous equation, both in the weak sense and classically everywhere except
at the corners. We choose a smooth bump function ¢ like in the Neumann case, i.e.
¢ = 1 and 0,¢ = 0 on the boundary of Bg. Then by the work of Miranda [47], u¢
is (Holder) continuous (and bounded) on Bpg, and under this assumption, using the
method of barrier functions, Azzam [2] gives that v € C?*9)(B,) for 6 € (0,7/4).
The following bounds holds on B, for r < £ ([2]):

|D?*u(x) — D?u(y)]
sup |u(x)| + su <C 2.4.1
zEB% ’ ( )| :Jc,yG%r dK(xa y)a ( )

where the constant only depend on the manifold K, the function g and the constant
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a. In particular, on any compact set in K, u has bounded €% norm and so does f,
iLe. || fllcze(K) < C(g, K). We will make use of the bound soon. O

Remark 2.4.6. The book of Miranda [48], the paper of Liebermann [44] and of Azzam
and Kreyszig [3] give a nice review over reqularity of solutions of mized boundary value

problem.

In this paper, when we say that an end is parabolic or non-parabolic, we always
mean that 0y F N 0y E with a constant angle in (0,7/4). Applying Hopf Lemma (see

[23] Lemma 3.4) we have the following maximum principle.

Theorem 2.4.7. If K is compact in M, and f is harmonic on K with 0, f|s,x = 0,
then

max f < max min f > min f.
oK r= K 1 90K r= K !

In particular, maxy f = maxy, g f and ming f = ming, x f.

Lemma 2.4.8. Let (M,0M) be a complete Riemannian manifold. Let K C M be
a compact subsest of M. Let E C M be an unbounded component of M \ K, fix
p € E and consider Bg,(p). Assume E is parabolic, then there are positive harmonic
functions f; on E N By, with

filovr = 1L, Vy filaor = 0, filoips, = 0,
with R; — 0o. Then f; — 1 in Cpo(E) and lim; [, |V f;]> = 0.

Remark 2.4.9. Again we may choose R; and mollify the boundary 0Br,NOM without
relabeling so that the angle of intersection is 6 € (0,7/4). We will omit this step later

when mollification is needed.

Proof. Let f; be the minimizer of Dirichlet energy over Bg, given the above boundary
conditions. We first claim that f; has finite and decreasing Dirichlet energy. Since
given a Lipschitz domain in R", a function is in VVO1 2 (zero trace) if and only if it
can be approximated by a sequence of compactly supported smooth functions, and F

has Lipschitz boundary, using a partition of unity, the same holds for on E. So if we
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extend f; by zero on Bg, \ Bg, we get another candidate and that we may assume
Je IV final? < [ IVAP < [ VAP = Ch

Using Lemma 2.4.5 and maximum principle, we know that || f;||co < 1, for all
i > 0. Now using equation (2.4.1), we know that sup; || fi||c2.e(x+ is finite for any
compact subset K/ C E.

We also have that f; subsequentially converge in Ci:% (for some a@ > 0) to a
harmonic function 1 < f < 0 on E, and by parabolicity and maximum principle,

f =1 everywhere on F, and we have:
E HE

using the uniform convergence to f =1 in C}|_-norm near 0, E. O

We note that nonparabolicity is inherited by subsets. The proof of the lemma
below is analogous to Proposition 3.5 in [15] if we use Lemma 2.4.5 to deal with

regularity of mixed boundary value problem.

Lemma 2.4.10. Consider K C K compact subset in (M, 0M), with each component
ofM\K and M\ K is smooth except at the corners. If E is a nonparabolic component
of M\ K, then there is a nonparabolic component of M \ K.

The above lemma, together with Theorem 2.4.3 says that, starting with any non-
parabolic end E; := E C M \ K, we can build a sequence of nonparabolic sets Ej
with 0y Ey N OM contained correspondingly in any small neighborhood of 0Bg, (p),
intersecting with M at angle 6 for any 6 € (0,7/4), for any R}, in a open dense set

of (0,00). Hence we have the following definition.

Definition 2.4.11 (Nonparabolic Ends). Let (Ey) be an end with each OF) inter-
secting with OM at angle 6 € (0,7/4) and smooth except at the corners, we say that

(Ey) is a nonparabolic end if k > 0, the component Ey is nonparabolic.

We also note that the unique minimal barrier function on a nonparabolic end has

finite Dirichelt energy, a fact we will use in Section 2.5.
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Theorem 2.4.12. If E is a nonparabolic end of M, then there is a harmonic function
f over E with fla,g =1 and V, f|a,e = 0, that is minimal among all such harmonic

functions and has finite Dirichlet energy.

Proof. By definition of nonparabolicity, there is a positive harmonic function g with
glo,g = 1,0,9]0,r = 0. We solve over an exhaustion U;en$2; = F, the following mixed

boundary value problem (each €; contains 0, F),

Af;i=0, filae=1 0ufilaar =0, filoa:\@ Euor = 0.

We may assume all the corners of €2; has interior angle in (0, 7/4). Maximum principle
then gives that f; < g over €2;. Using the same argument as in Lemma 2.4.8, we have
that f; converge in 01203 to a positive barrier function over E, that is bounded by g.
Since this argument applies for arbitrary g, we have that f is the unique minimal

barrier function. Now we show f has finite Dirichlet energy.
/ Vil = JiV, fi < Cy,
o8 HE

where the last inequality is bounded by a constant we again used equation (2.4.1)
near a compact set containing 0; E. Now we can let ¢ — oo in the equation below to

get that f has finite Dirichlet energy.

[ v =t [ VP <ca
Q I>1 Q;

2.5 At Most One Nonparabolic End

We follow the same method in [15] to show that under a suitable condition (A > 0) for
the boundary 0.X of an ambient manifold X with Rico > 0, any free boundary stable
minimal hypersurface with infinite volume can only have at most 1 nonparabolic end.

We begin with the following theorem.
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Theorem 2.5.1. Consider (M,0M) a complete manifold, K C M compact and
Ey, Ey are two nonparabolic components of M \ K. Then there is a nonconstant

bounded harmonic function with finite Dirichlet energy on M.

Proof. By definition of parabolicity, on each end E (s = 1,2) we can find a harmonic
function 1 > hg(z) > 0 with hs|s, g = 1,0, hs|g,r = 0. Using Lemma 2.4.12, we may
assume that each h, has finite Dirichlet energy.

We solve for harmonic functions f; on By, (again mollifying the boundary to get
small intersection angle with M) such that fy, Br,NE; = hi, fa, Br,NEy = 1—he, f; =0
on other components of 0, Bg,, and 0, fi|g,ps = 0. Using a similar argument to that

in section 4, we have that
sup |V fillZ2(g,.,) < CUIV fillzasa,) + IVRlZ2 + [[Vhe|[72) < oo,

and that f; converges in 0120? to a harmonic function on M with finite Dirichlet

energy. The function takes value in [0, 1] by maximum principle, and is nonconstant

by arrangement at the two ends Fy, Es. O

Theorem 2.5.2. Let (X*, 0X) be a complete manifold with Ricy > 0, and (M3,0M) a
free boundary orientable stable minimal immersion, given a smooth harmonic function

u on M with Neumann boundary condition, we have the following estimates:
1 2112 2 1 2 2
O [Vl + ¢ |V|Vul]
3 Jm 2 Jm
< [ VOPITuP + [ VUV IVl — Al 0) Va6
M oM

Here 1 is the second fundamental form of M — X and A is the second fundamental
form of 0X — X, v L TOM in TM andn L M in X.
If we have Ay > 0, then:

1 1
3 [ FMPIAE g [ v < [ vervar 2sa)
3 Jm 2 Ju M

Proof. Using the second variation for orientable hypersurfaces we have for any family
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of immersion with speed % ‘ tZOQOt(M ) = on:

d2
0< —
— dt?

= [ 190l — (0P + Rictnm)? ~ [ Ann)o?
M oM

Area(py(M))

t=0

Fixing any compact supported smooth function ¢, we plug in /|Vu|? + €¢ to the

second variation formula then let € — 0 to get the following,
0 S/ IV [Vul* + ¢*|V|Vul|* + (V¢ V|Vul)|[Vu| — [I[*|Vul*¢?
M
- [ vuPAG e
oM
= [ IV6PIVul = [Tul[ul6? - [1F|Vul*e?
M

A ¢*(=[Vul*A(n,n) + [VulV,|Vu]),
M

here we have used that Ricy > 0 implies Ricy > 0. Note over M° we have the
following (see also [15]):

AlVu|* = 2 Ric(Vu, Vu) + 2|Vul?, Bochner’s Formula
3
|V2u|? > §|Vu\_2\V]Vu]2\2, Improved Kato’s Inequality

—2
Ric(Vu, Vu) > ?|]I|2|Vu|2, Lemma 2.2.5

These together imply |Vu|A|Vu| > Z2|T*|Vul? + |V |Vul[?, which we can plug into
the last inequality, to get:

1 1
/§|H|2|Vu|2¢2+§|V|Vu||2¢2g/ |V¢|2|VUI2+/ ¢*(IVulV, | Vul=|Vul*A(n, n)).
M M oM

Note using Neumann condition we get 0 = Vg, (Vu,v) = (Vy,Vu, v)+(Vu, Vg,v).
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So we can compute the boundary terms:

/ IVulV, [ Vuld? — A, n)|[Vul?d?
oM

9, Vu 2
:/BM_|vu| (<|v V) + A 1)6)

Vu 9
= |~ IV T ) + (1. Ve

[Vu

Using that A(eq,e1) + A(ea, e2) > 0if e; L ey (note n L M while Vu is along M), the

above integrand over the boundary is now nonnegative, and we have the inequality:
1 217712 2 1 2 2 2 2
= | OIFVul"+ 5 [ &IVIVU|]" < [ Vo[Vl
3 Jm 2 Ju M
(]

Theorem 2.5.3. Let (X*,0X) be a complete manifold with Ricy > 0, and the bound-
ary of X has second fundamental form satisfying As > 0, and (M,0M) a free bound-
ary orientable stable minimal immersion with infinite volume, then for any compact
set K C M, there is at most 1 nonparabolic component in M \ K. In particular, M

has at most one non-parabolic end.

Proof. Since we can apply inequality (2.5.1) of Theorem (2.5.2), we have, for any

compactly supported smooth function ¢,

1 1
! / SIP|Vaf? + & / PIV Va2 < / VP V.
3 M 2 M M

We can proceed as in [15]. Suppose there are two nonparabolic components E, Ey, we
can find a nonconstant harmonic function with finite Dirichelt energy and Neumann
boundary condition on M by Theoerem 2.5.1 . We build the cut-off function based on
p(z) : fix 2 € M, pis a mollification of dy(, z) such that plag, () = Ri and [Vp| < 2.

The cut-off ¢;(x) is equal to 1 in Bg,(z), it’s equal to 0 outside Bg,(z) and equal to

R;—p(x)

75— otherwise (we may assume Bp, (z) C K).
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Then using ¢; we have as R; — oo:

\V4 2
5 [ amervat g [ amivar < [ o < ST

So we get that |I||Vu| = 0 = |V|Vu|| over Bg,(z), and letting Ry — oo gives
us the two terms vanish on M. So |Vu| is constant, and using u has finite Dirichlet
energy on M which has infinite volume, we must have Vu = 0, a contradiction since

u 1S nonconstant. O

2.6 Free Boundary p-bubble and Almost Linear Vol-

ume Growth

We begin with some background on Caccioppoli sets used in our setting for free
boundary p-bubbles. One can find preliminaries of Caccioppoli sets or p-bubble in
[46], [15].

Definition 2.6.1. A measurable set Q in a compact Riemannian manifold N is called
a Caccioppoli set (or a set of finite perimeter) if its characteristic function xq is a

function of bounded variation, i.e. the following is finite:
P@) = sup{ [ aiv(9).0 € YN R, ol < 1},
Q

We call P(Q2) the perimeter of Q inside N (it’s also equal to the BV —norm of xq
inside N ).

Using Riesz Representation theorem, the distributional derivative V(xq) is a
Radon measure and we can find a Borel set (up to change of zero measure) whose
topological boundary is equal the support of this measure (see [46]). We will always
assume €2 is such a set and use Jf2 to denote its reduced boundary. We note in [46]
the reduced boundary is denoted as 0*(2 and is contained in the topological boundary,

by De Giorgi’s structure theorem the [ — 1 dimensional Hausdorff measure of 9*€) is
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equal to P(€2). The next lemma establishes regularity of 02 for minimizers of an
appropriate functional.

Consider a compact Riemannian manifold N3 with boundary ON = 9,N UO_N U
0. N (O;N is nonempty for i € {0, —, +}), where 0_N and 0, N are disjoint and each
of them intersect with JyN at angles no more than /8 inside N . We fix a smooth
function u > 0 on N and a smooth function h on N\ (0_-N U0, N), with h — +o0 on
O+ N. We pick a regular value ¢y of h on N\ (0_-NUJ,.N) and pick Qg = h~((cg, 0)).

We want to find a minimizer among Caccioppoli sets for the following functional:

A(Q) = /mu - /N(XQ — Yoy ). (2.6.1)

Lemma 2.6.2 (Existence of Minimizers). There is a minimizer § for the above func-
tional A. The minimizer has smooth boundary which intersects with 9yN orthogonally.

Also QA is a compact subset in N°U JyN.

Proof. We can take )y as a candidate so the infimum value of A is finite. Now we
take a minimizing sequence €2;. Using approximate identity ¢y, we have xq — xq, :=
XQ* Pk, — Xa, converges in LP(p > 1) to xo —Xxq,, together with that the BV —morm is
lower semicontinuous with respect to L!—norm, we can apply mollification to assume
each xq, has smooth boundary.

Now note that since h — 400 on d4+ IV, we may assume each €2, contains some fixed
small neighborhood 2 | of 04 N and must not contain some fixed small neighborhood
Q,_ of O_N for a 7 > 0 (this is proved in details in [15]) Proposition 12.

So the function (xq, — xq,)hu is supported on the compact set N \ 2,4 and
uniformly bounded in k, since there is some ¢ > 0 so that v > ¢ > 0 on N \ Q.+ and
) is a minimizing sequence, we get that the BV-norm of {2, is uniformly bounded in
k, and so a subsequence converge in the following sense: V(xg,) in the weak* sense
as Radon Measures, yq, in the L' sense, and the limit yq_ is also a BV function.
Therefore A(s) = limg A(€2), and we found a minimizer.

We note that regularity of free boundary minimal hypersurfaces has been es-
tablished by Jost-Giuter [31], corresponding to the case u = 1 and h = 0 for the

functional A. For general ellipic integrand and almost minimizers, by De Philippis
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and Maggi [17] Theorem 1.10 or [18] Theorem 1.5, we have that 9 is a C2 hyper-
surface in N interesecting with dy/N orthogonally by the first variation formula given
below, which also gives us the mean curvature (exists weakly a priori) is a smooth

function, this gives smoothness of 0f2. O
We now compute the first and second variation for such minimizers.

Theorem 2.6.3. Assume () is a minimizer of A in the settings above, we have the

following first variation formula, writing ¥ = OS2,
Vst —hu+uHs =0 on X, ves(x) L T,ON forx € 0¥ C OyN,

and the second variation formula,

d2
5| (A@(@)
2
:/E |VZ¢|QU — i(RN — RE + |]I|2 + HE) + ¢2(ANU — AEU — V,,E(hu))
—/ U¢2A(VE,VE)
/ IVo|?u — @(RN — Ry) + ¢*(Anu — Asu — uV, h — % — UT_l(V,,Eu)Q)

/ ud?A(vs, vs)
o

Proof. The computation follows similarly from first and second variation formula of
free boundary minimal hypersurfaces. We consider a family of diffeomorphism ¢, of
N with vector field X;, notice that if x € ON then X; € T,ON. Let 0Q; =: X, the

first variation is given as:
d d d

0)) = — h
g =5 [ u-g [

d d d
/(dt )dHZt /U@d,}'{zt —/hU£dH2t

_ / (V) - / )X vm) + [ tudivan, X,

p3M
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— /Zt Vx,u) / (hu)( Xy, vaq, ) +/Et(udivant Xt)
- [

hu) (X, vs,) + / (udivy, (th + XtT))
p

(Vu, (X, — X)) — hu(X,,vs,) — uHs, - X;*) + / u(Xy, vos,)
Xy

Xy

= / (Vu - th — hu(Xy,vs,) — uH;t XtL) +/ u( Xy, vos,)
N %y

Recall we used the convention that mean curvature H is defined as the trace of

the second fundamental form and hence Hy, = —(V, e;,v5) = —Pfg ‘vs. Soatt =0

we have V,,u — hu + uHy, = 0 on ¥, and that vps(z) L T, 0N for x € 0¥ C ON.

Now we continue with the second variation :

d
ad ! 0)) — X
pn t:O(A (p:(2)) /(Etu( 1, Vos,))
:/% t_o(vu . th — hu( Xy, vs,) — uH;t -Xf)dvolg

(Vu - vy, — hu + uHsy, )dvols,

t=0

:/@%

&1 (0y(Vu,vs,) — Vx, (hu) + (Vx,u)Hs, + u0Hy,), att=0.

pI

Since at t = 0,0X N ON orthogonally, using the exponential map near 9%, for any
smooth function ¢;, the diffeomorphism near ¥ given by ¥ X (—€,¢) > (x,t) —
exp, (tv;) is admissible and produce a normal variation near . We will also use
Anu — Asu = V?u(vs,vs) + HeV
d :
= (AleQ) = [ u(Xe,vos,))
=0 5y

d :

=—1  (Ae(©)))
t=0

= / Qﬁ?(VQU(VE“ V2t> - Vyzt (hU) + HgtvyztU) + ngt(Vu, atV2t>dUOlg
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+ /u¢t(_AEt¢t - ¢t(‘:[[2t|2 + RiCN(VEta Vzt)))dUOZE7 at t =0
:/ |Vso|?u — u¢?(|Is|* + Ricy (vs, vs)) + ¢*°Viu(vs, vs) + ¢(Vu, vs,)
s
~ [ (Vinll) = Vi) + [ (V5. Vs0)0— [ u0V,00
5 s o%

Z/ [VsoPu — ug®(|Is|* + Riey (vs, vs)) + ¢°(Ayu — Asu) — ¢*V,, (hu)
>

+ / (bt(VUv atl/Et) + <v2u7 VZ¢>¢ - U¢V1’az¢
b

ox

Now we use that for a family of evolution of hypersurfaces using a normal vector field
we have —Vy¢ = O,vy and from the Gauss equation we have Ry = Ry 42 Ric(v,v) +
[T — HE to get,

A
ug?

= [ IVs0Pu— 255 (R = R+ 1P+ 1) + (s = A = Vi ()
- [ ublso.vux)
/ Vso|?u — ”iz(RN — Ry + |I> + H2) + ¢*(Anu — Asu — V., (hu))
/ (O, vos), at t =0,
/ Vo2 — “isz R+ [T+ HZ) + 2(Anu — Asu — Vo (hu))
/ WV, Xo vos), at £ =0,
= [ 95000~ o R+ H2) + 6% (A = A = o ()

/ U¢ A(I/Z,Vz)
ox

We now write [I|2 = |T|2+ E > Z and notlce that according to the first variation

and u > 0 we have T(“HE) = T(V,,Eu) T — hV,4u, so in total:
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2

0 Sﬁ (A<90t(9)))

/ IVo|*u — —(RN — Ry) + ¢*(— 385, + Anu — Asu — V. (hu))

/ ug’® A(vs, vs)

2 32 —1
/ |ng|2u _ %(RN — Ry) + »? (Anu — Asu —uV, h — v %(VVEU)Q)

/ ud?A(vs, vs)
ox

]

Combining the second variation of free boundary minmal hypersurface and that of
pu—bubble, we can produce a diameter bound as follows (see [15] for the case without

boundary).

Theorem 2.6.4. Consider (X*,0X) a complete manifold with R > 2, Hyx>q, and
(M,0M) — (X,0X) a two-sided stable immersed free boundary minimal hyper-
surface. Let N be a component of W for some compact set K, with ON =
0N UON,00N C OM and N C K. If there is p € N with dy(p,01N) > 27, then
we can find a Caccioppoli set Q C Bo, (01 N) whose reduced boundary is smooth, so
that any component 3 of the reduced boundary 0*Q) will have diameter at most 21

and intersect with OyN orthogonally.

Remark 2.6.5. For convenience we also assume Oy N N IyN at angle 6 € (0,7/8)
within N due to similar regularity considerations as in secition 2.4. This can be
arranged by purturbing N near an arbitrary small neighborhood, so will not influence

the final bound for the diameter.

Proof. We again use I for N — X and A for 0X — X. We write v for the outward
normal of ON C N (the same for 0X C X). For any variation ¢; of (N,0N)

compactly supported away from 0; N, writing %‘ ot = Jvn, with vy a unit normal
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of N — X, we have by the second variation formula for stable free boundary minimal

hypersurfaces:

2

d .
0< SzlecsArealoiN)) = [ 19w s = (P + Riclows o)) = [ Alwo) ™
dt N AN
Integration by parts gives us,

0< / ~(fANS + [T f* + Ric(vy, vn) f2) + f(Vuf = Alvw,vw) f).
N

N

We denote the first eigenvalue as:

[y —(fANf + [Ty |? £ + Ric(vn, vn) f?)
S 12 ’

where S = {f # 0, floxy = 0 and V,.f — A¥(vn,vny)f = 0 on §yN} and each test
function f is taken to be compactly supported and A; (V) is well-defined by domain

A (N) = min

monotonicity property for compact sets (A1(B;) < A\(Bs) if By C By) from Fischer-
Colbrie and Schoen [20] for example.

We first show that there is a C? positive solution to Ay f+(|I|?+Ric(vy, vy))f =0
and V,f — A(vy,vn)f = 0 along 0y N.

We consider the following problem over a compact exhaustion (€2;) of N, each

containing the boundary 0, N:

(Ax + |Iy > + Ric(vy,vn))f =0, QF
Vof —Alwn,vn)f =0, GNNQ
f=0, 0
f=1, O,N.

By domain monotonicity we have A\;(€;) > 0 for each €2, so the above problem
has a unique solution in H' and via interior and boundary regularity, we have each

solution v; is C3(€);). We claim that each v; > 0 on €, by Hopf Lemma ([23] Lemma
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3.4), it’s enough to show v; > 0.
Now assume {v; < 0} # ), we write v, = v — v, we have that (Ay + [Iy|? +
Ric(vn,vn))v™ > 0 and since v € H? we get that on yN, v~ is either 0 or has

Vv~ + A(n,n)v™ =0 in H' sense. Now using v~ as a test function we get:
0> / —(v"Axv™ + [I*(v7)? + Ric(vy, vy) (v7)?) +/ v (Vo — Alvy, vy )v7),
N N

a contradiction to A\;(€2;) > 0.
Now we have that v; > 0 and v;|s, 5 = 1 then we can proceed as in [20], Harnack
inequality gives v; subsequentially converge in C2_ to a nonzero function on N, with

u>0on N° ul|gny =1 and,

(An + Ricx(vy,vn) + |[In)u=0 on N°, VYu— A(vn,vny)u=0 on dyN.
(2.6.2)
Now we follow Chodosh-Li-Stryer [15] and apply the free boundary p bubble to
the above u and a proper h.
Consider a mollification of d(-, 0y N) with Lipschitz constant less than 2, denoted
as pp, we may assume that po(x) = 0 for all x € 9; N, and the level set {py(z) = 27}
is a smooth submanifold in V.

Define Q; := {z € N,0 < py < 27}, Qp:= {0 < pp < 7}, and set

hz) = —tan(%po(:c) - g) — tan(p(z)).

We solve the p—bubble problem among Caccioppoli sets whose symmetric difference
with g is compact in €0y, i.e. we minimize the functional A(f2) using the given h and
u > 0 obtained above. We obtain a minimizer {2, and for any component ¥ of 9*€),
we have 90X N 9y N orthogonally and from the second variation formula in Theorem

2.6.3 we get for any compactly supported smooth function ¢ on ¥ (Lemma 15 of [13]),

1 1
0 g/ IVso|?u — 5(RN —1— Ry)d*u+ (Ayu — Asu)p* — %(vyzu)%@
b
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/ —%(1 +h?+ QVVEh)qZ)?u — / A(vs, VE)¢2U,
5

ox

and now we have that 1+ h*+2V, h > 1+ tan?(p) —sec’*(p) = 1 —1 = 0. So in total

we have:

0 g/ |Vso|*u — %(RN —1— Ry)d*u+ (Ayu — Asu)p* — i(v u)*¢?
b))

2u ¥
—/ A(vs, vs)d*u.
ox

We can plug in the equation (2.6.2) for w, using R, > 2 and Gauss Equation
Rx = Ry + 2Ricx(vn,vn) + [In|> — H to get:

0 g/ Vso|?u — %(1 — Ry)¢*u — Asug® — %(vyzu)%? - / A(vs, vs)d*u
by u %
1

< /2 Vso|?u — (5 — K5)¢*u — Asup® — / Alvs, vs)d*u

0x

g/ —div(uVse)p — (% — Kx)¢*u — Asug® — / (A(vs,vs)d — (Vso, n))du
s

[)))

By the same argument we used above to obtain u, we can find a function w with

A(vs, vs)w — (Vsw, n) = 0 so that on 3,
, 1
div(uVyw) + (5 — Ky)uw + wAyu =0
We let f = uw and by combining the equation above we have over X:

Asf = wAsu + divs(uVsw) + Vsu - Vew

1
= —(z — Ky)uw + Vu - Vw

2
_ 1_ L 2 2 2
= (2 Kg)uw+2uw(|Vf| ulVw|* — w|Vul?)
1 1
<—(=-K — |V f]2
< (3~ K)f + 37191

Lemma 17 in Chodosh-Li [13] also holds under the following condition (a short
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proof is obtained in lemma 2.6.6 below):
Oy f = uoyw + woyu = A(vs, vs)uw + A(vy, vy )uw = Hox [ — kos f > —kex f-

So diam(X) < 2. O

Lemma 2.6.6. If (32, 0%, g) is a compact Riemannian manifold with Gauss curvature

Ky, and,

VAP
2\

for some smooth X\ > 0, n the outward unit normal of 0% C X, kox, the corresponding

geodesic curvature and Ky € (0,00). Then diam,> < \/KZOW.

Ash < —(Ko — Ks)A + VoA + kosA > 0 (2.6.3)

Proof. We follow the proof of Lemma 16 and Lemma 17 in [13] and track the sign
of the boundary terms carefully. If not, then we can find a free boundary curve
v : [a,b] — X with 9y C 9% and the following (from Proposition 15 in [13]), take
u=\and Y?u =1,

1 1
0< / IV 0%u — 5(RE — 2Ko) Y u + (Asu — Aju)® — 5(2[(0 + 1?42V, h)y*u
vy

V., ul? / 2
_ cAulNY I |
W ), o5 (Vy, Uy) 71

1 1 1
= / @’VWF — 5(Ry = 2Ko) + v~ (Agu — Aju) — 5(2K0 +h* +2V,, h)
il

5
2
V., ul? /
— a — Tos(vy, vy)
; 2U2 . YTy

(x1) 1 |Vsul? = |V, ul>  _
< / ol Tl 4+ P A /Mﬂazmuy)

*2 3 - -
(:)/ﬁ|VW|2-I~Vw(U 1)V7“_/ U Vot Tox (v, 1)
5 AU Oy

* —1
3 /E|V7u|2 —/ u 'Vu+ kax <0,
y *U oy

where in (1) we used the assumption (2.6.3) and that (Ko + 3h* + V,_ h) > 0 as in
Lemma 16 of [13]; in (x2) we used integration by parts; in (x3) we used vy, = 1 by

free boundary. The strict inequality gives a contradiction. n
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Theorem 2.6.7 (Almost Linear Growth of An End). Let (X*,0X) be a complete
manifold with weakly bounded geometry, Hyx > 0,Ricy > 0 and R, > 2. Let (M?,0M) —
(X4,0X) be a complete simply connected two-sided stable free boundary minimal im-
mersion. Let (Ey)gen be an end of M given by Ey = M \ Bgr(z) for some fized point

x € M and let My, = E, N m7 here L = 20w (determined by the constant
in the lemma above). Then there is a constant Co = C(X, L) and ko such that for

k > ko,

Volyr (My,) < Cp.

Proof. The proof that there is a large kq so that for all & > ko, M}, is connected is the
same as [15] Proposition 3.2 (this uses the simply-connectedness). For each Ej we can
purturb the boundary so that it intersects with 0M with an interior angle 6 € (0, 7/8)
and we can apply Theorem (2.6.4) to Ey, < X, so we obtain 2 C By (OE%). Also with
the same proof as [15] Lemma 5.4, there is some component 3, of 92 that separates
OF) and OF})1, then Theorem (2.6.4) implies that diam (%) < ¢ for (¢ = 27) and
diam(My) < 4L + ¢. We can show this last inequality by taking any two points 21, 2o
in My, for each z; there is a minimizing path connecting x and z; and intersecting
Y, at some point y;, the arc connecting vy;, z; is at most 2L and combining with
diam(Xy) < ¢ we get d(z1,22) < 4L+ c.

Now by curvature estimates Lemma 2.3.1 we can apply the volume control Lemma
2.3.3, to get a constant Cy = C'(X, g, L, ¢) such that,

Vol(Byr+.(p)) < Co,

for all p € M. Since diam(M}) < 4L + ¢, we get Vol(M}) < Cy as desired. O

2.7 Proof of Main Theorem

Now we are ready to prove the main theorem. We first explain some set up.
We first assume M is simply connected and has infinte volume (otherwise the
proof is the same as assuming M is compact as described in the introduction), and

by section 2.5 we know M has at most 1 nonparabolic end (FE}j)keny which we can
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apply Theorem 2.6.7 to obtain M, and kg, L, c following the notation in Theorem
(2.6.7).

We write M as a decomposition of the following components, fixing z € M and

write Br(z) as Bg,

M = By, U Egy U (M \ (B U Ek,))
=: BkoL U Eko U Pko

We also have inductively,for each i > 1:

Ey, = Mko U Pko+1 U Ekyt1
= My, U Prg1 U (Mg 41 U Prgi2 U Elg42)

ko+i—1 ko+i
:( U Mk> u( U Pk> U Epyi

k=ko k=ko+1

where each P, when k > kg is defined as Ej, \ (Ej41 U B(r41)1), and each component
of P, for k > kg is parabolic.

We restate the main theorem for convenience of reader:

Theorem 2.7.1. Let (X*,0X) be complete with R, > 2, Ricy > 0, weakly bounded
geometry and weakly convex boundary. Then any complete stable two-sided free bound-
ary minimal hypersurface (M3, 0M) is totally geodesic and Ric(n,n) = 0 along M
and A(n,n) = 0 along OM, for n a choice of normal bundle over M.

Proof. Following the set up above, fix x € M, i > 1 and obtain ky, L, ¢, Ey, My, Py.

For each k > ko, Py is made of disjoint parabolic components. Py, and Py, are
also disjoint if k; # ko. So we can apply Lemma (2.4.8) to each of these component,
and obtain a compactly supported function uy on each Py, with [ P, (Vug|? < %2 and
with the boundary condition ug|ap\om = 1, Vou|arnp, = 0.

We let p a mollification of the distance function to x, with |Vp| < 2 and

ploe, = kL, ploam\om, = (k+1)L.
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Consider ¢(z) = %, then we can define a compactly supported Lipschitz func-
tion f; as follows. When x € M, for some kg < k < ko +i — 1, then fi(z) = ¢(p(z)),
and when x € P for some ky < k < ko + i we define f(x) = ¢(kL)ug. One can
check that this definition agrees on the intersection, and we can define f(z) = 1 when
x € By, and f(z) = 0 when z € Ej, ;. Now we can apply this test function into the

stability inequality for free boundary minimal hypersurface, together with A > 0:

i 2\ 42 12 Aln.n) 12
/M<R (1) + [IP) S/MIVfI /BM (n.0)f

ko+i—1 ko+1

< ¢ (p)IVpl* + > ¢*(kL) | |[Vuxl*

4Cy i+1 ' .
§i2L2+ 3 §7—>O as ¢ — 00.

Since f; — 1 on M as we let i — 0o, we get that everywhere on M, Ric(n,n) = 0 and
I =0, and A(n,n) = 0 along OM. O]

We note that until the last step, As > 0 is sufficient. We now provide a coun-
terexample to Theorem 2.7.1 if one replace A > 0 by A, > 0.

Consider S* ¢ R® with induced metric, and any closed curve v C S*, we look
at the intrinsic neighborhood X = B.(y) := {z € §*,d(z,v) < €}. We can choose
v so that As > 0 everywhere but A(ej,e;) < 0 for some nonzero e; at a point in
X. We can minimize area among all hypersurfaces with (nonempty) boundary and
nontrivial homology class contained in 0X, then we have a stable free boundary

minimal immersion.
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Chapter 3

Uniformly Mean Convex Manifolds

with Non-negative Scalar Curvature

In chapter 2 we studied free boundary minimal hypersurfaces in manifolds with uni-
formly positive curvature and mean convex boundary, for example a spherical cap. In
chapter 4 we will study stable free boundary minimal hypersurfaces in B*, which has
non-negative sectional curvature but uniformly mean convex boundary. This means
we need to find analogous geometric control for such manifolds.

In this chapter we use stable generalized capillary surfaces (analogous to the p-
bubble construction) to study manifolds with strictly mean convex boundary and
nonnegative scalar curvature. We give an obstruction to filling 2-manifolds by such
3-manifolds based on the Urysohn width. We also obtain a bandwidth estimate and
establish other geometric properties of such manifolds.

Results in this chapter come from [66].

3.1 Introduction

In [27], Gromov asked the question of finding sufficient conditions to allow or disallow
filling in a given Riemannian manifold Y as the boundary of a Riemannian manifold
X! with nonnegative scalar curvature. Can the mean curvature of Y = X prove

enough influence so that the we cannot prescribe certain geometry properties on X7

48



In this paper we are interested in the case when n = 2. If Y is a connected
orientable closed surface with positive Gaussian curvature, then there is an isometric
embedding of Y into R? as a strictly convex surface, we denote the mean curvature of
this embedding as Hy (such embedding is unique up to isometry of R?). Using this,
Shi-Tam [58] proved that if there is some (X, g) with nonnegative scalar curvature

filling such a Y with positive mean curvature H, then

/HdaS/Hoda,
Y Y

where do is the volume form induced from the metric g. Moreover, equality holds if
and only if X is a domain in R3. This result gives a positive answer to the question
in the first paragraph.

In this paper, we give another answer in the following theorem using (generalized)
capillary surfaces. As an example, if a 3-manifold fills S?* with H > 2 and has
nonnegative scalar curvature, then the first Urysohn width of S? in the induced metric
is no more than 4.57 (take ag = %, dy = %”) Recent results in upper bound of Urysohn
width was also obtained in [63], [45].

Theorem 3.1.1. If (N3 0N, g) is a simply connected complete manifold such that
Ry >0 and Hon = 3=+ ao, then the first Urysohn width of ON (with respect to the
induced metric g) is bounded: Uy (ON) < 4do + -

In another direction, Gromov proved the following bandwidth estimate, here we
denote 77! as the n — 1 dimensional torus. The theorem can be proved using the
idea of p-bubbles [28].

Theorem (Bandwidth Estimate, [26]). Let M, = T™ ' x [—1,1], with 0+ M, =
Tt x {1}, if a Riemannian manifold (M",g),2 < n < 7 admits a continu-
ous map f : (M,0:M) — (My,0:My) with nonzero degree and scalar curvature
bounded from below R, > n(n — 1), then the distance of 0+ M and 0_M is bounded:
disty (0. M,0_M) < 2.

Using u-bubbles, that is, studying stable hypersurfaces with prescribed mean cur-

vature in a manifold with positive scalar curvature (PSC) has given fruitful results
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in recent years (see for example [40] [69][13][15]). In these works, the fact that the
scalar curvature of the manifold has to obtain a strictly positive lower bound is cru-
cial. On the other hand, for manifolds with boundary, to constrain a minimizer of a
generalized area functional, we can prescribe both mean curvature and the angle of
intersection along the boundary. In particular, mean convexity assumption is helpful
to constrain capillary surfaces. This allows us to relax the assumption of PSC when
studying manifolds with boundary.

Gromov studied a band with PSC of the form ¥? x [—1,1], for a closed surface
¥ with xx < 0 (for example the torus). Our model example in case of surface with
boundary would be My = (Xg,0%) X [—1, 1], with a Riemannian metric such that
Ry, > 0, and the boundary dyM is strictly mean convex. We will use capillary

surfaces in M, as an analogy to the p-bubbles in Gromov’s bandwidth estimate.

Theorem 3.1.2 (Bandwidth estimate). Consider a compact 3-manifold (M,0M)

with the following decomposition (see Figure 1),

M = (So,050) x [-1,1], OM = 8,M U9, M,
aﬂ:M = EO X {:l:l}, (%M = 620 X (—]_, 1)

Here ¥ is an orientable surface with boundary and Euler characteristic x(3q) < 0.

We denote the scalar curvature of M by Ry, mean curvature of OgM by Hy, the top
0. M as S, the bottom O_M as S_. If M has mean convex boundary OM (Hap > 0),
Ry > 0,Hy > 1, then dgp(0S4,05_) < m, in particular, dp(S4,5-) < 7.

In [52], Ros and Souam studied constant mean curvature surfaces which intersect
the ambient boundary at a constant angle, called capillary surfaces. In the second
variation formula for generalized capillary surfaces, instead of constant angle, we allow
the prescribed angle to vary. For manifolds with nonnegative scalar curvature and
strictly mean convex boundary, we are able to gain rigidity results for 2-manifolds
(Theorem 3.1.3), and exhaustion of the boundary for 3-manifolds (Theorem 3.1.4).

Theorem 3.1.3. Consider a complete connected Riemannian manifold 32 with bound-

ary, such that Ry, > 0,kss > 1, then 0X is connected with length no more than 2m;
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Figure 3.1: An example of M when ¥, is an annulus.

for any x € ¥, ds(x,0%) < 1, so X is compact. 3 is a topological disk. If |0X| = 2,

then ¥ is isometric to a flat unit disk in R2.

The fact that every point in this manifold must be at most distance 1 away
from the boundary follows from Li-Nguyen [43] and Li [41]. Furthermore, Li [41]
conjectured the following: A complete Riemannian manifold M"™ with nonnegative
Ricci curvature and Agy, > 1 must be compact (Agys is the second fundamental
form of the boundary). The case for surfaces has been known (see [22] for general
Alexandov spaces set up). This theorem gives an alternative variational proof to
the 2-dimensional case of this conjecture. We note in Theorem 3.1.3 we do not
assume orientability or embeddedness. In the case of M™ C R""! a strictly convex
hypersurface bounding a region with pinched second fundamental form, Hamilton [35]
showed that M must be compact.

Contrary to the 2-dimensional case, for a connected 3-manifold with nonnegative
scalar curvature and Hyys > 2 (Hgys is mean curvature of the boundary), its bound-
ary might not be connected or compact. But we can obtain an exhaustion of the
boundary as below, and show that the boundary has linear volume growth under

further topological assumptions (see Corollary 3.1.5).

Theorem 3.1.4. Let (M3 0M) be a complete connected Riemannian manifold with

nonnegative scalar curvature, and OM is connected non-compact with Hgyy > 2.
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We can find an exhaustion of the boundary OM = UyZy, with 0Z, = 0¥}, where
¥ is a union of finitely many capillary surface of disk type in M. Each component
Yy of ¥}, has bounded boundary length: |0X;| < 2w, and ds, (x,0%;) < 2 for any
T E Y .

Furthermore, assume either OM or M is simply connected. Let E; be an un-
bounded component of OM \ Zy such that Exi1 C Ey (i.e.(Ex)52, is an end of OM ),
then By \ Ey., is connected and supy, diamay(Ey \ Ej1) < 5.

Using Theorem 3.1.4 and simply-connectedness, if OM has weakly bounded ge-

ometry, we can apply section 3 in [65] to get the following corollary.

Corollary 3.1.5. Let (M?,0M) be a complete connected Riemannian manifold with
nonnegative scalar curvature. Assume either OM or M is simply connected. If OM
1s uniformly mean convex and has weakly bounded geometry, then each end of OM
has linear volume growth. In particular, if OM has finitely many ends, then OM has

linear volume growth.

3.2 Result for Surfaces

Throughout this paper, if (N*¥1 9N, g), k > 1, is a Riemannian manifold with bound-
ary, we denote the second fundamental form of 9N C N with respect to the outward
pointing unit normal v as I(X,Y) = —(VxY,v) for vector fields X,Y tangent to
ON. Then the scalar-valued mean curvature is written as H = Zle —(V,e;,v) for
an orthonormal basis (e;)¥ of T,0N at some point p € ON. In this convention, the
boundary of the unit ball B? in R3 has positive mean curvature, Hyps = 2.

We first prove Theorem 3.1.3, using “capillary curves” in surfaces of nonnegative

scalar curvature and strictly convex boundary.

Proof of Theorem 3.1.3. Consider ¥, with Ry, > 0 and geodesic curvature ks > 1.

If ¥ is compact, the dx(x,0%) < 1 part follows directly from [43, Proposition 2.1]
and [41, Theorem 1.1]. Note that from this result we know that X is compact if and
only if 9% is compact.
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Step 1. If we know that ¥ is compact, we can show that 0% is connected and the
length of 0% is no more than 2.
We apply Gauss Bonnet theorem to get, denoting %Rz = Ky:

2 > 2y = / K —|—/ kos, > |82| > 0. (3.2.1)
b ox

Here we used ¥ has at least one boundary component, so xyx < 1. And if 9% has
more than 1 boundary component then we would get yx < 0, a contradiction. So 0%
is connected with [93] < 27, and x(X) > 0, so xx = 1, and ¥ is a topological disk.

Step 2. We now look at the rigidity statement under the assumption that ¥ is
compact (and 0% is connected by Step 1).

If K >0,k >1and |0X]| = 27, then from (3.2.1) we must have K = 0,k = 1
everywhere. So ¥ is locally isometric to the flat unit disk D = {(zy, x5), 2} + 23 < 1}
, we show that the local isometry can be extended globally.

We denote the unit speed loop of 9% as v : [0, 27| — ID, and write v(0) = v(27) =
p. Then by choosing € small enough, we can find an isometry for each ¢ € [0, 27| with
U, : B(y(t)) = D. Combining ¥, with a rotation of D around origin, we can patch
up these isometry U, to get a global isometry ¥, from B.(0) to a neighborhood of
dD in D.

We now define a global isometry ¥ from ¥ to D as follows, for x € B.(90%), ¥(z) =
Uy(x). Now fix p € 0¥ and for any ¢ € ¥\ B.(0%), for any path s(t) : (0,1] — X°
with s(0) = p, s(1) = q. We cover s(t) with interior balls each of which can be mapped
isometrically into an interior ball in D, in a way that agrees on the overlap (see [39,
Theorem 12.4|). Then applying in [39, Corollary 12.3], we have obtained a global
isometry from X to D.

Step 3. We now show 0X is connected (if ¥ is non-compact).

If not, then there are at least two components 0,3, 0,3 of 9X. Let’s first assume
that a = inf {d(x,y), 2 € 0,X,y € X} can be obtained by a stable free boundary
geodesic [y(t). Let T be a unit normal vector field of Sy, notice that along 9%, T
is tangent to 0%, this vector field generates a local variation of 3y denoted by [,(t).
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Then the second variation formula of length L(/,) implies,

[ B L
v = [ G+ [ @)

< V2T, =5y(0)) + (VrT, fy(a)) < =2 <0,

where we used convexity at the end points, i.e. (V7T 55(0)) = kos(5o(0)) > 1 and
(V1T By(a)) = —kasx(Bo(a)) < —1; this is a contradiction.

Now we look at the case o can’t be realized by a stable free boundary geodesic.
In this case, at least one of the component is not compact. Assume 0 is non-
compact, then we can try to find a minimizing geodesic line via points on 01%. To
elaborate, consider the universal cover of ¥ named ¥, then we have again (at least)
two components of the boundary 9%, denoted 8;%, 9% Assume 9, is not compact.
We denote 0,3 = R as 7(t), with |7/(t)| = 1, ¥(0) = ¢, v(£n) = £q,. Consider the
minimizing geodesic in > from +g¢, to —¢, denoted l,(t) , which cannot touch the
boundary except at end points due to strict convexity.

We fix a point p € &% and a minimizing path from p to ¢, denoted by pq(t). Now
any minimizing geodesic in ¥ between +¢, must intersect pg. Indeed, if there is a
minimizing geodesic [ between =g, and [ N pg = (), we can minimize distance of +g¢,
(similarly for —¢,) to pg, and then use this to build a path transversal to pg with
intersection number 1. Concatenating with I, we get a loop in ¥ whose intersection
number with pq is equal to 1. But this loop is homotopic to the constant loop at e.g.
+@,, by simply-connectedness, a contradiction (see section 2.4 in [33]).

Now consider a minimizing geodesics v, (t) connecting +¢,,. First, |v,| — oo, since
we can pick £¢, to be in % \ B, (pq) for large n. We look at one of the intersection
points of 7, and pg named s, and the velocity vector of ~, at s, named v,, then
{($n,vn),n € N} is contained in a compact set, and we have a subsequence converging
to some point (s,v). The geodesic ray from s with velocity v (respectively —v) must

have infinite length because we can get C}

o-convergence of these geodesics when

(Sn, V) = (s,v). This means that we have found a geodesic line.

Now we can use the Toponogov’s splitting theorem generalized to manifolds with

o4



convex boundary (|6, Theorem 5.2.2]) to conclude that ¥ = R x I where I is a
connected one manifold with boundary, this is a contradiction to the boundary being
strictly convex.

Step 4. We assume Y is not compact and get a contradiction. In particular, we
assume the diameter of 0% is unbounded. By the result of Step 3, we can assume
that 0% is connected. The idea is that if the diameter of the boundary 0% is large,
then we can prescribe a “capillary-minimizing” geodesic, and use stability inequality
to get a contradiction.

The set up in Step 4 and Step 5 are written in general, not restricting to the
ambient manifold being two dimensional. We use the notation B, (x) to denote a ball
of radius r around z using the distance function on ¥, and B.(z) C 0% is a ball of
radius r around = € 0% using the distance function of 9% with respect to the induced
metric.

Assume w : 0¥ — [—1,1] is the following Lipschitz function, for some fixed
T € 0%,

1 x € Bl(zo)
w(r) = cosp(z) —1<wx)<1
-1 x € 0%\ Bh (zo)

Here p(y) : 03 — R is a smooth function with|Vp| < 1. We denote Wy := {z €
0% : w(zr) = £1} and require the set {z € 0% : p(x) = 7} = OW_ and the set
{r € 03 : p(x) = 0} = OW, to be smooth submanifolds.

Now we minimize the functional in (3.2.2) among open sets with finite perimeter,

containing the set Bj(xg). Take such a Caccioppoli set 2 and let,
A(Q) = H' (00Q) — / w, (3.2.2)
QoS

where H'(0Q) is the perimeter of 9 in 3.
We note that if a smooth minimizer 9 # () exists, then for each component ~ of

0 with 0y # 0, using the second variation formula [52], we have over the minimizing
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curve 7,

A0) = [ =606~ (Ric(N,N) + 1, )6°

2 2
gb Vl—,w + ¢

V.7, N) — ¢* cot p(N,V,v),
anZ ) Sinp( v,N) — ¢~ cot p( V)

+ ¢vu¢ -
Oy

where N is the outward unit normal of 0¥ C ¥, N is the inward unit normal of
02 C Q, and 7 (respectively v) is the outward unit normal of 9Q N IX C QN IX
(respectively 0y C 7).

We can plug in ¢ = 1, use I, = 0 = (N, V,v), and use the Gauss Equation,

1

SN ]
s p((Vu% )+ Vip)

1
0<A"(y) = —532 +/
0 0

1
</ —(-141) =0,
oy SIN P

using |Vp| < 1 and —kps = (Vy7, N) < —1, leading to a contradiction.

Step 5. In this step we write down some technical details needed to show that a
smooth minimizer exists (used in Step 4).

If Q is a candidate in a minimizing sequence of A, by assumption we have 02 N
Bl(x) = (). In fact we can find an open neighborhood ' of W, = {z € 9% : w(x) = 1}
in ¥, so that any minimizing sequence must contain §2'.

To elaborate, we assume without loss of generality each (2 in the minimizing

sequence has smooth boundary, now we show that for some choice of €',

5(Q) = AQUQ) —AQ) =H' O\ Q) —H (00N Q) — / w < 0.
ATN(\Q)

We consider the following family ®,(z) := exp(—¢;(z)N(z)) for z € 9%; recall
N is the outward pointing unit normal of ¥ C X. Here o;(z) := max{s¢(z) + t,0}
for some fixed small s > 0 to be chosen, and ¢ : 93 — [—1,1] is a smooth function,
such that {x € 0¥ : ¢(x) > 0} = W2, and V¢(x) # 0 for any € 0W,. Note

that I'; ;= ®,(0X) \ 0% is a smooth submanifold in 3, and as s,¢ — 0, ['; converges
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to a smooth domain in 9%. We denote the unit normal of I'; by 14, pointing in
the direction as ¢ increases. Then since Vo(z) # 0 for any x € OW_, we have
vo(z) - N(x) > —1 = —w(x). We pick s’ small enough, so that for any ¢ € [—s, s'] and
r €Ty NI, v(x)- N(x) > —w(x). Also because I'; converges to a smooth domain
in 0% as s,t — 0, using kg > 1, we know that divr, (1) < —0.5.

Let €0 := Uye[—s11'+ be the union of these “foliation”, containing a tubular neigh-

borhood of W.,. By divergence theorem for Lipschitz domains we have,

5(Q)§/ Vt‘VaQ'—/ Vt'VaQ—/ w
oV\Q aQNgY aTN(\Q)

= / divr, (1) + / vi- (=N) —w
N\Q axN(Q\Q)

< / divp, (1) <0
0N\Q

where we used v;- N > —w(x) for any z € T,NIY and divr, (v,) < —0.5 for t € [—s,s'].
We get that any minimizing sequence must (eventually) contain €.

We obtained for any minimizing sequence 7; = 0€);, we have Q; D Q' D W,
eventually. A similar argument shows that Q; N W_ = (), so the term fazmi w is
uniformly bounded for a minimizing sequence, and H!(~;) is also uniformly bounded.
We get that the minimizing sequence must be contained in a bounded set from the
point zo. We can continue the minimization with standard BV compactness and
regularity theory (see [17]).

We now check that the smooth minimizer v = 02 must have nonempty boundary.
Note Bj(zg) C ' C Q, and 2 is disjoint from the set W_. So if v is a minimizer with
empty boundary, then 2N 9% and 9% \  is two disjoint nonempty open sets, whose

union is 0%, a contradiction to 9% being connected. O

3.3 Result for 3-Manifolds

Contrary to the 2-dimensional case, a 3-manifold with nonnegative scalar curvature

and uniformly mean convex boundary, might not have connected boundary. We also
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might not have that any point is at bounded distance away from the boundary (using
the same method would require non-negative Ricci curvature).

Before we start the proof of Theorem 3.1.4, we need the following lemma which
is analogous to Lemma 16 in [13|. The inequality (3.3.1), when compared to the
requirement of [13] in the PSC setting, is suitable for nonnegative scalar curvature.

And we added the assumption (3.3.2), which is suitable for mean-convexity.

Lemma 3.3.1. If there is a smooth function u > 0 over a compact surface (%,0%)

with nonempty boundary, such that,

RZ |V§;u|2
< —= ..
Asu < 5 + o over X, (3.3.1)
V;u > a9 — kogx,  over 0%, (3.3.2)

then d(z,0%) < a% for any x € X; the outward pointing unit normal along 0% is

denoted as v, Ry, is the scalar curvature of ¥ and kyy, is the geodesic curvature of 0X.

Proof. If not, assume d(z,0%) > f—o + 26 for some z € ¥ and 0 < 0 < 1. We then find
a minimizer of the following functional F(I') for sets with finite perimeters I' C X
containing a neighborhood Uy of z (will be chosen later) and disjoint from 0%. Denote

OI' = v, and v, the outward unit normal of v C I,

F(r) = / u= [ bt = x,).

2 .
adsosy > 0 when y € U, with

a = % + 0 and U = {y € ¥,d(y,0%) < a}. We require h|ss < ag, h|x\v = 00, and

here h(y) is a mollification of the function h(y) =

%hQ — |Vh| > 0 everywhere on U. We pick I'y to be an open neighborhood of z with
smooth boundary and h|s\r, € L*. So for any smooth open set I', F(I') > —o0.

By the proof of Proposition 12 in [13|, there is a smooth open neighborhood Uy
around z such that F(I'UUy) < F(I') for any I" with smooth boundary and hls\y, €
L®°. This implies that any minimizing sequence must contain Uy and inf F > —oo0.

We now check that any minimizing sequence must be disjoint from a fixed open

neighborhood of 9%. So by interior regularity we have that a smooth minimizer exists
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[61] [13].
By first variation, if a smooth minimizer I exists then its boundary ~ has geodesic

U

curvature equal to k, = h — VT. If v touches the boundary 0% at some point =z,

then,

ko (2) = Blos(e) — ~2(a)

< hlos(z) — ao + kos(z) < kos, (3.3.3)

where we used (3.3.2) and hlss < ag. Using this observation, similar to Step 5 in
Theorem 3.1.3, we use a foliation along 0% to modify our minimizing sequence so
that it is disjoint from a fixed open neighborhood of 0%.

To be precise, given any smooth minimizing sequence v; = 0I'; , we show that
FI\T") < F(Iy), where T" = Uyepo,q,-cox exp,(—tv) for some small € to be decided.
If we fix t € [0, €], then we get T} = U, cpx exp,(—tv) a smooth curve with unit normal
v; (pointing in the direction as ¢ increases), and that as ¢ — 0,1, — —v. We denote

the outward pointing unit normal of 07" C 7" and 0I'; C I'; as vy and vgr,. Then,

oT'nr; or;NnT”’ ;N1

< / Uy + / uvy - Vor, + / hu
oT'MT; ar;NT’ ;N7

= le (uvy) + hu
/AT

:/ udlv (vy) + Vo, u+ hu
T'Ar;

/ u(div=(v) + Vi +h)<0
/N u

in the final inequality we used (3.3.3). Indeed, as t — 0, v, — —v, div(1y) — —kss,
so by (3.3.3),
Y4 div(y) < 0.

So any minimizing sequence must be disjoint from 7" provided we choose e small

enough.
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We now write out the second variation formula for a minimizer of F(I"). This was
derived in Theorem 6.3 of [65] (see also [13] Lemma 16),

1 1
0< / IV Pu — §Rgz/)2u - §k3/¢2u + (Axu — A u)p? — (Vsu, v, )0*h — (Vsh, v )
gl

2 ) )
S
Y

2u
2 2
< / V020 + Vo2V + % (%)
Y

(VV,Y u)2 _ hV,,W u
2u u

. To
get the strict inequality in (x) we used %hz + V., h > 0. Then we can plug ¢ = w2
into (%) to get 0 < [0 £5(V,u)?, a contradiction. So ds(x,0%) < 2 as claimed. [

2
where we used (3.3.1) in the second inequality and also %” = %2 +

Remark 3.3.2. One can check that in the above proof, it’s sufficient to have equation
(3.8.1): Agu < B+ % over the set U := {y € X,d(y,0%) < % +30} instead of
requiring it everywhere in X, because (3.3.1) is only used in the step before (%) over

the minimizer v, which must lie in U by construction.

Before proving Theorem 3.1.4, we start with the simple case which allows us to find

capillary surfaces in a compact manifold with sufficiently large boundary diameter.

Lemma 3.3.3. If (V,0V,g) is a connected compact 3-manifold with Ry > 0, the
mean curvature of the boundary satisfies Hgy > % + ag for some ag > 0 , and
OV is connected with intrinsic diam(0V') > dy > 0. Then there are finitely many
capillary surfaces (3;)%_, with nonempty boundary of bounded length: |0%;] < Z—’OT,
and dy, (z,0%;) < % for any x € ;. Furthermore, each ¥; 1s a topological disc, and
UF |3, separates OV .

Proof. Let diam(0V') = dgyv(p,q) > do + 50, for some 6 > 0 and p,q € V. Then we
can build a smooth function w : 9V — R such that w(z) = 1 if dgy(p,z) < 26 and
w(z) = =1 if dyy(p,x) > doy + 36, and when —1 < w(z) < 1, then w(z) = cos p(z)
with |V p| < =

We consider a minimizer of the following functional among open sets {2 with finite
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perimeters, containing B3} (p) and disjoint from the set OV \ BV, 45(p),

A(Q) = 0] —/ w.
ovNQ

Claim: Any minimizing sequence {2; must (eventually) contain a fixed open neigh-
borhood around W, := {x € 9V : w(x) = 1} and (eventually) be disjoint from
some fixed open neighborhood of W_ := {x € dV : w(x) = —1}; the boundary of
0, i.e. 900 NIV, of a minimizer Q, must lie in the set {z € IV : |w(x)| < 1}.
We remark that the regularity for capillary surfaces (see [17],[11]) requires that
NNV C {x €V : Jw(z)| < 1}.

The proof of these two claims is analogous to Step 5 of Theorem 3.1.3. Let N
be the outward unit normal of 0V C V, we consider the following family ®;(z) :=
exp(—p(x)N(z)). Here ¢y(z) := max{s¢(z)+t,0} for some small s > 0 to be chosen,
and ¢ : OV — [—1,1] is a smooth function, such that {z € OV : ¢(x) > 0} = W2,
and Vo(z) # 0 for any x € OW,. The same argument as in Step 5 of Theorem 3.1.3
shows that each slice 3, := ®,(0V) \ AV is a smooth surface with unit normal v, and
mean curvature H; > 0 and v; - N(x) > w(z) also holds for # € 3; N 9V for small
t > 0. We consider the foliation

Q = Ute[—s,s’]zt

Then the same computation shows that,

A(Q/ U Q) — A(Q) < / Vs - Vgqy — / Vp - Vg + / w
89\Q 80N AVN(Q\Q)
= / divy, (1) / (=N) +w
oNQ Q/\Q)
0.

< / divy, (1) <
an\Q

We finished the proof of the claim. So we find a minimizing Caccioppoli set €2
with smooth boundary ¥ = 9Q # () since V is connected, and 9% # () since OV is

connected. We note that 0{2 might have many components, some of which are closed
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surface with no boundary. We want to examine each component ¥ with non-empty
boundary below.

First we want to apply Lemma 3.3.1 to get the distance bound. We write v/1 — w? =
sin p # 0. We have the following first and second variation formulas over X (see also
[52]); here we also used the Gauss-Codazzi equation Ry = Ry +2Ric(N, N)+ [Ig]* —

HZ in the second variation:
Hy =0, (v,v) = cosp;

1
0< / —pAsd — §(RV — Ry + |[Ig|? + HZ)¢?
> 5

ox SN p

((Vy, N) +Vyp — cos p(N,V,v)) + ¢V, 0. (3.3.4)

where 7 is the outward unit normal of 0% C (ﬁ N GV), v is the outward unit normal
of 0¥ C ¥, N is the inward unit normal of ¥ C Q.
Now by (3.3.4) there is a smooth u > 0 over ¥ with,

1
Asu + 5(RV — Ry + |Ig| + H)u <0, (3.3.5)

V.,u+ [(Vo0, NY + Vup — cos p(V,v, N)] =0, along 9% (3.3.6)

sin p

The following computation appeared in equation (3.8) in Li’s paper [40] is very

helpful, here +' is a unit tangent vector along 0%,
Hyy = —(Vy, N) 4 cos p(N, V,v) —sin p(V..v', V). (3.3.7)

Combining equation (3.3.5),(3.3.6),(3.3.7) and Ry > 0, we have a smooth u > 0,

Asgu < %Rzu (3.3.8)

V., u 1 =+a 7
= —(Hav — Vpp) + (Vy,v) > B — — = kys > ag — kay.
u sin p sin p dy

So we can now apply Lemma 3.3.1 to get that dg(z,0%) < a% for all =z € X.
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Now recall the Gauss Bonnet theorem (for a surface with nonempty boundary
Xz S 1)7

1 1
21 > 27y = / — Ry, +/ koy = / — Ry, — / (Vv vy, (3.3.9)
2 ox. 2 ox.

Combining (3.3.7), (3.3.9) and the second variation (3.3.4), we have that for ¢ = 1,

1
0< / —5(3‘/ + [Ts|?) + 2mxs + / —(Viup — Hpv')
b oz Sl p

<21 — |95 - (—dlO + dﬂo + ap) (3.3.10)

=27 — |8Z| - aop,

note if yx < 0, we would get a contradiction in (3.3.10). So any ¥ with nonempty
boundary, must be a topological disk. We now get |03] < 2—:; as desired. O

We can now continue to the proof of Theorem 3.1.4, making suitable adaptions in

the complete non-compact case.

Proof of Theorem 3.1.4. We first build one capillary surface ¥ = ¥; using the same
idea in Lemma 3.3.3 adapted to non-compact manifolds, then we build X9, X5, 34...
one by one.

We consider a minimizer of the following functional among open sets {2 with finite

perimeter, containing B3 () (for some fixed 2o € M) and contained in B (z),

A(Q2) = |09 —/ w,

OMNSQ2

here w : OM — [—1,1] is the following Lipschitz function,

1 x € BIM ()
w(r) = < cosp(z) —1<w(r)<l1
-1 x € OM \ BIM (z)

Here p(y) : OM — R is a smooth function with|Vop| < 1. We denote Wy :=
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{r € OM : w(z) = £1} and require the set {x € OM : p(x) = 7} = OW_ and the set
{x € OM : p(x) =0} = OW, to be smooth submanifolds.

We want to apply the same proof of Lemma 3.3.3 to Byt (zy) C M so we need
to perturb the metric of M near dB2!(zy) to get mean convexity. In particular, in
a local coordinates near B3 () one can change the Christoffel symbols (which are
first derivatives of the metric) while maintaining the coordinates being orthonormal
(which is a condition only depending on the zero-th order derivatives of the metric).
So we can perturb the metric near B2 (z,) so that the mean curvature is at least 1.5,
and the perturbation happens within M \ B4 (zo). We denote the scalar curvature
after perturbation as Ryr, and Rar|pye(e) = Rar|Bo(o)-

Then we apply the same minimizing scheme as in Lemma 3.3.3, note we again
have that the boundary of a minimizer must lie in {y € OM, -1 < w(y) < 1} and in
this region w(y) can be written as w = cos(p(y)) for some smooth function p with
VoM p| < 1. So we find a smooth minimizer consisting of finitely many capillary
surfaces, we now analyze each component X that has non-empty boundary.

Similar to (3.3.8) (here put ag = 1,dy = 7w, Hapr > 2,|V?p| < 1), using the

second variation, we have a smooth function u : ¥ — (0, c0),

1 ~
Agu S §<RE — RM)U

V., u 1
= ——(Hon — Viop) + (VY v) > 1 — ks,
uw  sinp

where 7 is the outward unit normal of 9% C (ﬁ NoM ), v is the outward unit normal
of 0¥ C X.

Using Ras|io(eo) = Bar|Bro(ze) > 0 We have,
1 A 1
Ayu < §(RE — Ry)u < §Rzu over the set Big(xg).

Using Remark 3.3.2 to the set U := {y € X,d(y,0%) < % + 3} C Big(xg), we can
now apply Lemma 3.3.1 to get that d(x,0%) < 2 for all z € ¥. So ¥ C Big(xo),

}?M|g = Rys, and in the argument below we just write Ry;.
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Similar to (3.3.10) we have,

1
0< [ ~5(Rar + sP)+ 2mxs + | (Vap— Howr) < 27— (03],
by 1o}

5, sin p

here again yy < 1 since there is at least one boundary component; if xy, < 0, we
would get a contradiction in (3.3.10). So any ¥ with nonempty boundary, must be a
topological disk, and we have |0X| < 27 as desired.

In total, we have been able to construct finitely many capillary disks, we denote ¥4
as the union of all components of 9€) that intersect the boundary oM, Z; = QNIM,

and each component ¢ of ¥; have the following,

05| < 27, d(y,0%}) < 2 for all y € B,
BM(x) C Zy, 02y = 0% C BIM(x)\ B™M (x).

For the non-compact boundary OM, to get our desired exhaustion, we can replace
the w function above by wy, such that wy is a mollification of wy = cos pi for pp a
mollification of py = daps(x, ) — km on B(ak]‘fl)w(:c) \ BM(z), and |wy| = 1 elsewhere.
For the corresponding A(€2), we can obtain a minimizer €, 0€) has finitely many
components. We write Z; = € N OM. For each component ¥¢ of ¥ that intersects
the boundary OM, we have

05| < 2m, d(y,0%) < 2 for all y € I,
B! yria(@) C Zyy 02y = 05 C Bl a(x) \ By (2).

Since B?k]‘ill)w-i—Q(x) C Zk, we have UpZy = OM. For any z € OM \ Zj, any path from
z to x must contain a point in 0%, by connectedness of 0M. We now obtained an
exhaustion of M via boundary of capillary surfaces of disk type, with length at most
2.

If we know OM is simply connected, consider E, an unbounded component of
OM \ Zj, such that Ej,y C Ej. Then as in [15] Proposition 3.2, for each k, 0F) must

be connected, By \ Eji1 is also connected. We have sup,, diamgy (B \ Eri1) < 57.
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Indeed, consider any two points zq, 2 € B, \ Eki1, then for each z; there’s some
y; € 0%y, such that dap(z;,y:) < 2m. Now |0X| < 27 implies dap(y1,v2) < T,
adding up the length proves the claim. A similar argument also works if M is assumed

to be simply connected instead of OM. O

Remark 3.3.4. As a concrete example, take any surface o satisfies Theorem 3.1.3,
i.e. with nonnegative scalar curvature and strictly convex boundary, then Theorem
3.1.4 applies to ¥ x R. For example if X2 is a strictly convex spherical cap, then
Theorem 3.1.4 applies to any small perturbation of ¥? x R. We note that if M? has
nonnegative Ricci curvature and strictly mean convex boundary, it might not split as
Y X R. For example consider capping off one end of a solid cylinder by a half-ball. If
M? has nonnegative Ricci curvature, and strictly positive second fundamental form,

then [41] has conjectured that it must be compact.
Remark 3.3.5. In the proof above the bound d(x,0%) < 2 for all x € ¥ will depend

on mean curvature of OM C M and also on the angle function w prescribed on the
boundary. In [52], the authors showed the disks and spherical caps are capillary stable
surfaces of constant mean curvature in B3 when w = cos 6 is a constant function over
OB3.

Remark 3.3.6. Theorem 3.1.4 only describes the behavior of OM , and has no control
of the interior of M. As an example, if B = B3(z) is a small interior ball in M3
with Rylp > 0, then one can concatenate M \ B along OB =~ S* with S* x [0, c0)
or to any complete (non-compact) manifold (N,ON) with ON homeomorphic to S,
and Ryloy > 0. In particular, there is no equivalent of Corollary 3.1.5 for interior
volume control even if one assumes M is simply connected. Endowing S* x [0, 00)
with the spatial Schwarzschild metric as one interior end of M, the volume growth is

FEuclidean, instead of linear.

We can now apply the same method to prove the bound for 1-Urysohn width if
a surface can be filled in by a 3-manifold with a metric with strictly mean convex

boundary and nonnegative scalar curvature.

Definition 3.3.7 (1-Urysohn width, [28],[34]). Let X be a compact metric space, we
say that X has Uryson 1-width bounded by L, if there is a graph G (a 1 dimensional
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simplecial complex) and a continuous map f : X — G, such that every fiber f~1(y)
fory € G has diameter bounded by L.

Proof of Theorem 3.1.1. There is some n € N so that ndy < diam(ON) < (n+ 1)dp.
If n <1 then we are done, otherwise let dgn(p,q) = diam(ON) = ndy + 50, then we
can obtain functions (w;)j; : ON — R, wi(y) = 1 if don(p,y) < 20 + (I — 1)dy and
wi(y) = =1 if don(p,y) > ldo + 35. When —1 < wy(y) < 1 then w; = cos p;(x) for
VN pi(y)| < 7 for any y € ON.

We consider a minimizer of the following functional among open sets () with
finite perimeters, containing S; := Bgﬁ(l_l)do(p) and disjoint from the set 5] =
ON \ Bﬁl’§+35(p),

A(Q) = 09 _/ w,

ONNQ

Then we get (using the proof of Lemma 3.3.3) ¥; = 0€); capillary surfaces with finitely
many disk components (3F)X_ | and the boundary 9% of each component XF must
separate N into two components using simply connectedness of O/N. We also have
o%)| < 2.

Now OM \ (U}-,%;) is a union of finitely many 2-manifolds (F{ )zn:o C (g1 \ ),
if [ = 0 we think of ), as the empty set, if [ = n we think of €;,; as N. Each
component Fg has piecewise smooth boundary, such that 81"{ N 0% has at most one
component (exactly 1 if [ > 1) by simply connectedness. Indeed, if not then assume
that there are 9%}, 937 two distinct boundary components in P{, then take a fixed
point z € F{ and distance-minimizing paths [, to 0%; for s € {1, 2}, concatenate [y, [
together with a path in €; transversal to both [y, [ (for example by minimize distance
to the point p), we get a contradiction in terms of intersection number with respect
to each of [y, [y using simply connectedness.

We show that each F{ has diameter bounded by 4d, + o Ifl =0or!=n this
is true by triangle inequality. We now look at 0 < I < n, for any 21,2, € I, take
the distance minimizing path to 8F{ N 0% called tq,ty respectively. The length of
each ty,t5 is no more than 2dy by construction. We have just shown that (91“{ N oY,

is a connected curve with length no more than i—g, so the distance between any two
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points on the curve is no more than % Adding these together we get the bound of
diameter.

Using diam(9%F) < o for each [, k, we can find some tubular neighborhood Uy
of OXF in OM so that diam(U}) < 4dy + -

We now define a graph G and a continuous map [ : 9N — G. The graph G has
vertices vlj and [(x) = vlj it x € F{ \ (UlkUlk). We connect two vertices vlj and vlj:rl
with an edge Ej; = [0, 1] if I/ and 1"{;1 are separated by some 0%}, ;. For a point z

in the tubular neighborhood Uf ; homeomorphic to
aEf—i—l X [07 1] = {(yvt)ay € azf—i-lﬁt € [07 1]}a

we map by I(z) = l(y,t) =t € Ej;.

One can check that this gives us a continuous map of N to a connected graph,
the preimage of every point has diameter bounded by 4dy + 7=. Using the definition
of Urysohn width we have shown that the 1-Urysohn width of ON is bounded by
ddo + - O

Remark 3.3.8. In Theorem 3.1.1 these quantities Ry > 0, Hon > 7=+ ao, Ui(ON) <

4dg + 7~ scale accordingly. One can check that the minimum of

2
s s T
— 4dg+ —) =5 —— + 4apd
<d0 + ao)(4dy + ao) T+ e + 4aody,
is obtained when agdy = 5. So we can restate the theorem with Ry > 0, Hoy > 3ag,
and U1 (ON) < 3m/ay.

Remark 3.3.9. One can check that Theorem 3.1.1 also holds if X is complete non-
compact, by using the same adaption for non-compact case in proof of Theorem 3.1.4.
The proof of Theorem 8.1.1 also can be adapted if one assumes that M is simply
connected instead of OM.

3.4 Bandwidth Estimate

We now continue with the proof of the band width estimate.
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Proof of Theorem 3.1.2. See Figure 1 (in introduction) as an example. We argue by
contradiction. If dyp(0Sy,05-) > 7 + 20 for some 6 > 0, then there is a smooth
function w : 9yM — R, such that |w(z)| = 1 if x € oM \ K, w(z) = cosp(x) if
x € K, for a compact set K C 0yM with boundary 0+ K in 0yM:

(K,0+K) € Ko :={x € OM,5 < dopr(x,05_) <1+ 20},
and p is a smooth function with
plo_x =, pla,x = 0,V p| < 1.

We may further assume |w| =1 on M \ K.
Now we minimize the following functional over open Caccioppoli sets €2, such that
S, CcQ,85.NQ=0:
A(Q) = |99 / w. (3.4.1)

OMNQ
Using Hpys > 0 and the same argument in section 3.3, we know any minimizing
sequence has its boundary contained in the region {z € OM,|Vw(x)| < 1} (see also
[60],64]). By regularity of capillary problem [17]| [11], we have a smooth minimizer
¥ =00,

We also have dj;(3,5+) > 0. So we have S_ C ¥, Q' NS, =0,90 =% C M,
and we can find a map of degree 1 (mod 2) from a component ¥ of ¥’ onto S_ as
follows.

Consider a diffeomorphism f : My — S_ x [—1,1], then for any = = f~!(z, ) €
Y, we define the projection map P(z) = z,. Consider a regular value z € S_ and the
path I, := f7!(z,t) in M, , we may write I, just as (z,t) for t € [-1,1]. We look at
the characteristic function of ¥, then xqo/(z,—1) = 1 and xq(z,1) = 0, we note that
z can be in 9S_, and P~1(9S_) = 9%, so there is some component 3 of ¥’ such that
the degree of P is equal to 1 (mod 2). We also note that this means for any x € 9S_,
P~Yz)NX # (. If 9S_ has at least two components, then x(X) < 0, otherwise we
have a map of degree 1 (mod 2) from (3,0%) — (S_,05-).

Apply Kneser’s theorem [36] to the double of ¥ and S_, we have x(X) < 0.

69



Therefore, using the stability inequality (see also 3.3.10) we get,

1 1
OS/ —§(RM+|H2|2)+/ - (V,;,O—HQM)—FQ?TXE
= oy S P

1
</ —(1—-1)+2mx= <0
ox Sin p
a contradiction. ]

Example 3.4.1. We give an example when M, is homeomorphic to S_ x [—1, 1] with
xX(S-) > 0, to show that in Theorem 3.1.2, the assumption of x(S_) < 0 is crucial.
Take the cylinder D? x [—L, L] C R?, with D? unit disk in R?, and cap the top (or
bottom) slice D? x {£L} with an upper (or lower) hemisphere, then the length of the

cylinder is unbounded when we let L — oo.

Remark 3.4.1. We note that if in Theorem 3.1.2, we only assume Ry > 0, Hy > 1,
then by using the same arqument of Theorem 3.1.4 (in a non-compact manifold, we
can change the metric of M arbitrarily for points far away from the 0-bubble, using
Remark 3.3.2), we can show that dy(S4,S—) < m+4. This weaker bound is obtained

in the first version of the paper.

Remark 3.4.2. This bound is sharp and can be obtained by a very thin solid torus.
Consider rotation the circle {(z, 2), (x— R)*+2? = 1} in the xz-plane along the z-axis
in R?, then we get a solid torus with Ryy > 0, Hy > 1 — €(R), with ¢(R) — 0 as

R — oo. The top and the bottom of the torus has distance .
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Chapter 4

Rigidity of Stable Free Boundary

Minimal Hypersurfaces in B?

We prove that in the unit ball B* of R*, there is no complete two-sided stable free
boundary immersion. The result follows from a rigidity theorem of complete free
boundary minimal hypersurfaces in complete 4-manifolds with non-negative interme-
diate Ricci curvature, convex boundary and weakly bounded geometry. The method
uses warped #-bubble, a generalization of capillary surfaces.

In section 2, we state some preliminaries and introduce the notations and set up of
the paper. In section 3, we define “warped #-bubbles” and derive its first and second
variations. In section 4, we derive the inductive process and describe the inheritance
phenomenon of warped #-bubbles. In section 5, we study non-parabolic ends of free
boundary minimal hypersurfaces in manifolds with non-negative intermediate Ricci
curvature and 2-convex boundary conditions. In section 6, we prove the main results
combining all the ingredients.

Results in this chapter comes from [67].
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4.1 Introduction

We recall a complete two-sided stable minimal (free boundary) hypersurface M"~1 —

X" satisfies the following inequality, for any compactly supported test function ¢,

/ IV|? — (Ricx (var, var) + [M]?) @2 —/ Lox (var, var)9® > 0, (4.1.1)
M oM

for a choice of unit normal vy, of M < X, Ricy the Ricci curvature of X and II the
corresponding second fundamental forms.

In the case that 0X # (), Franz (Proposition 3.2.5 in [21]) obtained results for
manifolds with “weakly positive geometry”: If we assume Rx > Ry > 0, Hyx > 0 and
0X has no minimal components, or assume that Rx > 0, Hypx > Hy > 0, then every
complete two-sided stable free boundary minimal surface M, must be compact with
intrinsic diam(M) < C(Hy, Ry), and is diffeomorphic to a disc. The result allows
the author to obtain compactness results for compact embedded finite index minimal
surfaces in a compact 3-manifold with weakly positive geometry, leading to a uniform
bound of area, total curvature, genus and boundary components (Theorem 3.2.1 in
[21]).

In higher dimensions, to obtain analogous rigidity or non-existence results, the
assumption of Ric > 0 or R, > 1 needs to be strengthened ([15]). In this chapter,
our main result shows that we can trade the uniformly positive scalar curvature

assumption of X in [15] for uniformly positive mean curvature of 0.X.

Theorem 4.1.1. Consider a 4-manifold (X*,0X) with weakly bounded geometry,
assume Ricy > 0,Ipx > 0 and Hyx > Hy > 0. If (M?,0M) — (X*,0X) is a
complete two-sided stable free boundary minimal immersion, then M 1is totally geodesic

and Ricx (var, var) = 0 along M, Tox(var, var) = 0 along OM.

In particular, a compact 4-manifold with non-negative sectional curvature and

convex boundary, for example the unit ball in R*, satisfies our assumptions.

Corollary 4.1.2. There is no complete two-sided stable free boundary minimal im-

mersion in B*.
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To study PSC 3-manifolds, the p-bubble method has been revisited to obtain
prolific results including the Generalized Geroch Conjecture, the Stable Bernstein
Theorem conjectured by Schoen and the Multiplicity One Conjecture of Marques
and Neves (]29], [26], [69], [70],[68].[13], [14],[12]). The method of p-bubble, as a
generalization of minimal hypersurfaces, has proven to be a powerful tool to analyze
the geometry of the ambient manifold.

In the case of manifolds with boundary, the analogy is given by capillary surfaces,
which means constant mean curvature (CMC) surfaces having constant contact angle
with the ambient manifolds’ boundary. Li ([40]) used the method of capillary surfaces
to show Gromov’s dihedral rigidity conjecture for conical and prism type polyhedron.
Chai and Wang (|9]) confirmed the conjecture for some cases of hyperbolic 3-manifold.

In chapter 3, we used capillary surfaces with prescribed (varying) contact angle, a
notion called “#-bubble”; to study comparison results and geometry of manifolds with
non-negative scalar curvature (NNSC) and uniformly mean convex boundary, obtain-
ing sharp comparison results for surfaces, a 1-Urysohn width bound, a decomposition
for the boundary of such manifolds, and a bandwidth estimate. Using capillary sur-
faces with prescribed contact angle, Ko and Yao (|37]) proved a smooth comparison
and rigidity result analogous to Gromov’s dihedral rigidity conjecture.

The method of #-bubble in the above work for surfaces in 3-manifolds can be used
inductively. We observe that in manifolds with NNSC and uniformly mean convex
boundary, we have the PSC equivalent “inheritance”phenomenon. For a precise (and
more general) statement, see Lemma 4.3.4.

Since we are now interested in hypersurfaces in a non-compact ambient manifold,
it’s important to control the number of ends of its stable minimal hypersurfaces. Cao,
Shen and Zhu (|7]) proved that a complete stable minimal hypersurfaces in R* has at
most one end; a similar result on non-parabolic ends is obtained for manifolds with
non-negative intermediate Ricci curvature in [15]. The case with FBMH (M?,0M) —
(X?,0X) requires additional control of the boundary. We would like to use #-bubbles
(near the boundary) to exhuast the non-parabolic end. But a priori we don’t know
if the boundary 0M is connected or disconnected, compact or non-compact, whether

it’s contained in the parabolic end or non-parabolic end.
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Using Theorem Theorem 4.4.8, we can show if (M3, 0M) — (X*,0X) is a FBMH
and Ricy' > 0,19% > 0, assume M is non-parabolic and Vol(M) = oo, then each
component of M must be non-compact, and each component of the boundary M
must has an end in the only non-parabolic end of M.

We now provide a sketch of the proof of Theorem 4.1.1. We may pass to the
universal cover and assume M is simply connected. The idea is similar to [15]. We
want to control the volume growth of a stable FBMH M? in X* as of Theorem 4.1.1.
The parabolic ends behave in a good way as one can find a harmonic function that
approaches 1 everywhere while the Dirichlet energy goes to 0 when exhausting the
parabolic end, which serves as a good test function to plug into the stability inequality
(4.1.1). On a non-parabolic end, existence of a positive barrier function prevents us
from using the same idea, so we want to exhaust a non-parabolic end with chunks
with bounded diameter and volume, which shows that each non-parabolic end grows
linearly in volume. This is achieved using #-bubbles together with the control of the

boundary M and the non-parabolic end.

4.2 Definitions of 6-bubbles

We reserve the notation M to denote the boundary of a manifold (M,0M), and if
(2 is an open subset of M, we denote the topological boundary as 9'€2 and the closure
of Qas Q. Then ¥QNOM = 9'(2NOM) if Q has Lipschitz boundary and €2 intersect
OM transversally.

In this section we introduce the notion of #-bubble, a tool that is useful to probe
the geometry of manifolds with non-negative scalar curvature (NNSC) and mean
convex boundary, as an analogous notion to p-bubble, first utilized by Gromov to
probe the geometry of manifolds with positive scalar curvature (PSC).

We denote the reduced boundary of a Caccioppoli set €2 as 9*). Then if €2 is an

open set with smooth boundary of a Riemannian manifold, 0*Q2 = 9'Q.

Definition 4.2.1. Consider a Caccioppoli set {2 of a Riemannian manifold with
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boundary (X", 0X), a “6-bubble” is a critical point to the following “prescribed con-

tact angle” problem, among variations that send 0X to itself,

Ay(Q) = H (57 Q) — / cosf,

aXNQ
given a smooth function 6 : 90X — R.

Capillary surfaces are surfaces of constant mean curvature and constant contact
angle, and they are a critical point of Ay when # is a constant function on 90X and
the volume ratio separated by the capillary surfaces is fixed. The #-bubble can be
thought as a “generalized capillary surfaces”.

A more generalized notion called “warped #-bubble” is adapted from the definition

of 6-bubble with a weight on the ambient manifold, as an analogy to “warped pu-
bubble”.

Definition 4.2.2. Consider a Caccioppoli set 2 of a Riemannian manifold with
boundary (X", 0X), a * warped @-bubble” is a critical point to the following func-

tional, among variations that send 0.X to itself,

A, () = / udH" ! —/ ucos b,
0*Q 2XNQ

given a smooth function 6 : X — R and a positive smooth function u : X — R,.

We first show that a minimizer exists under suitable assumptions and is smooth

up to codimension 4 on the boundary.

Theorem 4.2.3. If (N",0N) is a compact connected Riemannian manifold with
connected mean convex boundary Hyy > 0, let 8 : ON — R be a smooth function
such that Sy = {x € ON,cosf(z) = £1} and S; and S_ are open sets with smooth
boundary in ON. Let S be the set of all Caccioppoli sets that contain S, and be
disjoint from S_, then

T

is obtained by some QL € S. If n < 4, then the minimizer € is a smooth submanifold

with boundary that intersect ON transversally.
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Proof. We follow the arguments in [66] for surfaces and 3-manifolds.It’s enough to
show that there is a fixed open neighborhood €2, of S, such that any minimizing
sequence must contain {2, , and be disjoint from a fixed open neighborhood €2_ of S_.
Then by connectedness of N, a minimizer must exists and must intersect N in a
compact subset of {x € ON, —1 < cosf(x) < 1} and the regularity results of [11] (see
also [17]) applies, for n < 4 the minimizer is smooth and intersect N transversally.

Consider the following family of foliations ®;(z) := exp(—yi(z)van) where vyy is
the outward pointing unit normal. Here ¢, (z) := {top(z) + t,0} for some small fixed
to > 0 to be chosen, and ¢ : ON — [—1,1] is a smooth function such that S, = {z €
ON,¢(z) > 0} and Vo(x) # 0 for any = € 9S,. Note that I'y := ®,(ON) \ ON is
a smooth submanifold in N, and as ty — 0,¢ < ¢y, ['; converge to S, smoothly, so
Hyyn > 0 implies H; := Hyp, > € for some € > 0.

Denote €2; := U_;,<s<¢I"y with outward pointing unit normal v, along the bound-
ary I';. Then we have that vyn(x) - vp,(z) > —1 = —cosf(z) for any = € 95, which
implies for small ¢; and 0 < t < to, vgn(z) - vr,(x) + cosO(x) > 0 for any = € OT;.

Then we take any candidate € (without loss of generality assume 02 smooth) and

compare,

Ap(QUQ) — Ay(Q) = H (07 (2 U Q) — H(9°Q) — / cosd

ANN(Q:\Q)

< / vr, - Ur, —/ vr, - Vaq —/ cos 6
9*Q\Q 8+ QNQy ANN(2:\Q)

= / div(vr,) — / vr, « Vgn + cosf
Q\Q ONM(Q:\Q)

S / _Ht S 07
Q:\Q

using when t < ty is small then H; > € > 0; and the last inequality is sharp is €, \
has nonzero measure.

A similar argument applies to show that any minimizer must be disjoint to some
fixed neighborhood €2_ of S_. O

We can show that the same proof applies to the warped 6-bubbles provided the
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weight function u satisfies suitable boundary assumptions.

Theorem 4.2.4. If (N",0N) is a compact Riemannian manifold, let 6 : ON — R
be a smooth function such that Sy = {x € ON,cosf(x) = £1} and Sy and S_ are
open sets with smooth boundary in ON. Let u > 0 be a smooth function on N with
Vit +uHgy > 0.

Let S be the set of all Caccioppoli sets that contain S, and be disjoint from S_,
then

a = inf A, ()
QesS

1s obtained by some QL € §. If n < 4, then the minimizer 2 is a smooth submanifold

with boundary that intersect ON transversally.

Proof. We apply exactly the same foliation as in Theorem 4.2.3, now we compare the

following,

IN
Q\Qj\

A (2, UQ) — A,(Q) u—/ u—/ ucost
“Q\Q 00N ONN(2:\Q)

uvp, - Ur, — / uvp, - Vo — / ucos 6
*Q\Q QN ANN(Q\Q)

div(uvr,) — / u(vr, - Van + cos0)
A\Q ONN(Q:\Q)

I
S~

Q

IN

[
S— 5—

div(uvr,)
£\

V,,Ftu -+ Udint vr,
+\Q

Note as t — 0,

V,,Ftu + udivy, vp, = =V, u —uHyy < 0.
Choosing ¢ small enough then we are done. O]

We compute the first and second variation of (warped) 6-bubbles.
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Lemma 4.2.5 (First Variation). If Q is a smooth 0-bubble in (N™,ON) that intersect
ON transversally, and 0*Q) = %, then let v be the outward pointing unit normal of

0¥ C ¥ and ¥ be the outward pointing unit normal of 0% C (AN ON), then
Hy, =0, (v,7) = cosb. (4.2.1)

If Q is a smooth warped 6-bubble in (N™,0ON) that intersect ON transversally, and

0*Q = X and a choice of unit normal vs,, then

Hy, = —v:ju, (v,7) = cosb. (4.2.2)

Proof. The proof of (4.2.1) is the same as the case where 6 is a constant function,
as shown in [52]. We now prove (4.2.2). Let X; be a vector field along ¥; with
X(z) € T,ON for x € ON N'Y,; then,

%(V@l(zt)) = /Zt divzt(uXt) — /6215 U COS G(Xt . 7)

= [ Vsu- X +udivs, X + / uXy - vy —ucosf(X; - D)
Yt Xy

= / (Vig,u+ Hy,u) Xy - vs, + / uX; -7 (v - 7 — cos ),
S %
where we used that for t =0, v, = (X; - 775 + (X - van )Von-

Setting the first variation equal to zero we obtain (4.2.2). O

Lemma 4.2.6 (Second Variation). If Q is a smooth warped 6-bubble in (N™,0N) that
intersect ON transversally, denote 0*Q) = X and given a choice of unit normal vs,
then let Xy be a vector field along ¥y with X9 = 3 and X;(z) € T,ON for x € ON N,

we denote Xy - vs =: ¢, then

2

dt?

Vol(%,) = / —upA¢ — ud? (Ricy (vs, vs) + |Is]?) + ¢*(Anu — Asu) — ¢(VZ¢, VZu)
t=0 Y

2
i / UV, — ug (Lyw (7, 7) — cos Ol (v, v) — V,0)
o5 sin
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where v is the outward pointing unit normal of 0¥ C ¥ and U is the outward pointing
unit normal of 0¥ C (AN ON).
Setting u = 1 we obtain the second variation of a 0-bubble.
A smooth (warped) 0-bubble is stable if for any admissible variation (if X; is a
vector field along ¥y, then g = X and X(x) € T,ON for x € ON N3%,),
02

—_ | Vol(s,) > 0.
dt?|,_,

Proof. We compute the integrand over ¥ and first show it’s enough to compute the

second variation over X+ = (X; - vg)vs, let X1 = X; — X,

d
Q13:/—
sdt|,_,

3

® / divy, (uHs - X; + vX#“) - X) + Vit (ully - Xo + Vthu)
)

b

where in the place where () is marked we used the first variation uHy- X;+V xpu=0.
We now compute ()7 using X; = XtL = ¢ - 1y with vy = vy, and evaluate at t =0

at each step,

Q1= / Oy(uHs, + Vg u)d
>
= / ¢*V g uHy, + ugpd Hy, + ¢°V, Vyu
>
= / —upAd — ug? (Ricy (s, vs) + [Is]?) + ¢* Voo uHs + ¢*(Vu(vs, vs) + Vs - V)
>

(z) / —upAp — uqbQ(RicN(l/g, vs) + |]IZ|2) + ¢2(ANU — Asu) — P*V=p - V=u
5

where in (%) we used that Ayu — Ayu = Vu(vs,vs) + VoouHs and ¢V, vs =
—V>o.
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We now compute the integrand over 9%. One can show that it’s enough to consider
variations X; = ¢ -7 with ¢ = —psinf (at t = 0) for this computation similar to the

interior case,

d (vy - 77 — cosB)

Q ::/ up—
i or  dt t=0

= / ucp(atut 7 e 5’t7t + QOSiH QVUQ)
10)>

= / _UQb (8,51/,5 Uy + Vg - 815715 + (%2 sin GVUG)
0

5, sin 6

We compute 0;1; - 77 using 7; = cosOv, — sinbvs,. Note only at ¢t = 0, 6y = 0 the

prescribed function over ON,

Oy - U = Oy - (cos vy — sin Oyus,)
= —sin 0, (O - vs,)
= —psin b (cos 0, V,,v; - vs, — sin 0:V v, Vi - vs,)
= —¢cos Ol (v,v) + @sin® O(—v; - Vi vs,)
= —¢cosOlls(v,v) +sinf(—v-V=¢) att=0.

And similarly,

O - vy = O - (cos 0,73 + sin O, )
= sin0(0,7; - van)

= —psinbllyy (7, D)

= ¢llyn(7,7)
In total we get,
up?
Q2 = / upV,0 — —lgn (7, 7) — cos Ol (v, v) — Vi)
o% sin 0

This finishes the computation. O
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Using Schoen-Yau rearrangement we can relate the interior terms in the second
variation with scalar curvature. Using a computation in [40]|, we can rearrange the

boundary terms to relate with the mean curvature of the ambient manifold.

Lemma 4.2.7 (Rearranged Second Variation). If Q is a smooth warped 0-bubble in
(N™ ON) that intersect ON transversally, denote 0*Q) = X and given a choice of unit
normal vs, then let Xy be a vector field along ¥y with Xy =¥ and Xy(x) € T,ON for
x € ON N Y, we denote Xy - vs; =: ¢, then

2

dt?

Vol(S,) = / — divs(uVe)p — %ud)Z(RN — Ry 4 |Ig?)
t=0 ¥

Vu 2 42
5 2u
up? )
—I—/ upV, ¢ — — (Hon — cos OHy, — Vip0) 4+ ugp“1,(0%)
o5 sin 6

where v s the outward pointing unit normal of 0% C X, U s the outward pointing
unit normal of 9% C (RN AN), and I,(0%) = — 3.1 *(Ve,e;,v) for an orthonormal
basis (e;) of 0.

Setting u = 1 we obtain the rearranged second variation of a 6-bubble.

Proof. We first prove,

2

dt?

Vol(%;) = / —upAg — %ung(RN — Ry + |Is)? + HZ) (4.2.3)
¥

t=0
+ / & (Anu— Agu) — 6(V=6, Vou)
>

2
+ / w6Vo6 — 20 (Hyx — cos 0Hs — Vb)) + ug?L, (05)
s sin

The interior rearrangement follows from the Gauss-Codazzi equation,
RN = Rz} + QRiC(VE, l/z)) + |]Ig|2 — H%

The boundary rearrangement follows from the following analogous computation of
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equation (3.8) in [40],
Hyon = lgn (7, V) 4 cos 0 Hy, — cos Olls (v, v) + sin 01, (0%).

This gives the equality (4.2.3).
The desired equality follows from first variation uHy, + V,,u = 0. O

4.3 Inductive Process

We now start with the inductive process of proving diameter and circumference
bounds for #-bubbles. From this section onwards, any #-bubble is assume to intersect

with the ambient manifold’s boundary transversally.

Lemma 4.3.1. Let (X2%,0%) be a compact surface with a positive smooth function
u: X — Ry such that,

|Vsul?

AEU S KZ“"‘ )
2u

V,ou > agu — Kxt,

for some ag > 0, where Ky, is the Gauss curvature of ¥ and kyx, the geodesic curvature
(equal to the mean curvature), and v the outward pointing unit normal of 0% C ¥;
then for any x € %,
ds(xz,0%) < 3
ap
Proof. We summarize the proof in [66] and the reader can refer to [66] for a more
detailed proof.
Assume that there is a point p € 3 with dx(p, 0%) = % + 2¢ for some € > 0. Let
2

2
h(z) = . ifds(z,0%) < = + ¢,
(@) 2 fe—dy(r,05) 5(2,08) < oo+

where we denote dyx(z,0%) the mollified distance function to the boundary and that
h% — 2|V=h| > 0. Let Qg be a fixed open set containing {z € ¥, ds(z, %) > % +€}.
We solve for the following warped p-bubble problem over ¥ for Caccioppolli sets

in ¥ containing a fixed open neighborhood of p, and be disjoint from a fixed open
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neighborhood of 9%,

= [ u= [ hutxo = xa)

A maximum principle argument of first variation in [66] shows that a smooth mini-

mizer must exists. This is where we need the boundary mean convexity assumption

O, u > At — KysUl.

Then the first variation of the minimizer I' = 9€), along a smooth variation X =

¢vr is the following,

—Ah /gz5 (uHp + V,u) — hug. (4.3.1)

And the second variation is,

d2
gz ()

/qﬁu (—=Ar¢ — ¢(Rics (v, v) + [Ir|?)) + ¢*Hx V. u

+ / ¢2VVFVVFU - ¢2VVF(hU)
T

@ [ (-6 = oG R + ) + 6 HsV g

+ / ¢*Vu(vr, vr) + ¢*Viu - Vet — ¢V (hu)
r

= /1“¢(— divr(uVre) — W)(%RE + |Ir[*) + ¢*(Asu — Aru) — ¢*V,. (hu)

|Vsul?

0 ¢* — ug?®|Ip|* — ¢* Aru — ¢*V,,. (hu)

(*3)
2 / o(— dive(uVre)) +
T

) . Veul? 5 ud? Vipty o 2
< [ (= dive Vo)) + DEEg - (= T — 6 Aru — 6V, ()

— /U(VF¢)2 + ’VEUPQSQ _ u¢h2 o (Vlfru)2 _ QZ)QAFU— qbQUVVFh
r

2u 2 2u
2
= [ - g acu— S0 + 29,00 + (Ve
r
*5)
(< /|Vpu| — ¢*Aru + u(Vro)?
r 2u
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= [ 4 euwed? + u(Tro)”
r

The computation of warped p-bubble here works in general dimensions with small
adaptions. In (x1) we used for surfaces the Ricci curvature is one half of the scalar
curvature; in general dimensions one can use the Gauss-Codazzi equation. In (x2) we
used that for a normal variation with speed ¢, dvr = —VI¢. In (x3) we used the
interior NNSC assumption Ayu < Kxu + ‘VZ |
Ip|? = (Hp)? = (h— )2 and [Ip[? > LB Lastly in (x5) we used h2 —2|V=h| > 0.

We now choose (;52u =1 to get,

. In (%4) we used the first variation

[Vrul? 2 Ve [Vruf  [Vreu?  [Veul?
Vruv v _ Vel
2u o O VUVt +u(Veg)® = 2u? u? - 4u? 4u?
which gives us a contradiction to the stability inequality. O

Lemma 4.3.2. Let (3X2,0%) be a stable u-warped 6-bubble in a 3-manifold (M3, 0M)
with,

RM |VMU|2
Apyu <
MU S 5 U+ ou y
and over the boundary 0% we have,
Viontt + u(Hapy — Vi) > (sinf)agu > 0 (4.3.2)

then we have |0%] < i—g and dg(z,0%) < % forall z € 3.
Proof. The rearranged second variation over X gives,
1
0< / v (V)6 — gud*(Ras — R+ [IsP)
)

vy 2 12
+/—|22#+¢2(AW—AW)
b

2

+/ upV, Q,Mb (Hanr — cos 0Hs, — Vi) + ug’ll, (0%)
o5 sin 6

[V>ul?¢?

2 + ¢2(—A2u)

< / —divg (uVe)o + %u¢2(Rz — [Tsf?) +
by
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2
+/ upV, ¢ — uqb (Hypr — cos 0Hs, — Vi) + ug*ll, (0%)
o% sin 0

Then we obtain that for some choice of ¢ > 0,

3,12
divs(uVe) < %U(ﬁ — pAyu + W?
Vi = - (Hyns — Vo — cos 0Hs) — 611, (%)

sin 0

Let f = u¢, then

Azf = dng (UV2¢) + ¢AEU + VZU . VZ¢

R >,,12
< Boogpvmu vmg 4 VU0
2 2u

< %ugb—l— |V2(U¢)|2 _ Ry f 4 ‘sz|2.

2ud 2 2f

We now check the boundary condition of f. We first claim that for v the outward
pointing unit normal of 9% C X

vw+;£5@mw—Vﬁ—amwﬁ)z%u>o (4.3.3)

Using (4.3.3) we get,

o, f = ¢0,u + ud, ¢

= ¢, u + —¢(H3M — V30 — cos0Hy) — uoll, (0Y)

U
sin 6

> ag(u¢) — 1,(9%)(ug) = aof — I, (%) f

This implies that ds(x,0%) < % for all x € ¥ using Lemma 4.3.1.
The proof of (4.3.3) uses the relationship of normal and conormal vectors of a
6-bubble.

V= Vgx, = cos OU + sin Orgyy, Vs, = —sin 0v + cos Qugyy

Vostt = —sin0Vyu + cos 0V, u, Vou = cosO0Vyu +sindv,, ,u

19>}
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This implies

Vou+ —(Hoy — V50 — cos O Hy,)

U
sin 0

Vo cosf

(=Vytt) + — > (Hous — Vit)

sin 6 sin
OV ,u + sin OV 0o+ Gt " (Hyy — V,0)
=cosOVyu+sinbV,, u—cosdVyu+ —V,. u+— — V»
oM sinf M sing' oM
1 U
=—V, ——(Hop — Vi) > > 0.
sin aMu+sin9( oM ) = aou
Finally, we can use Gauss-Bonnet in the second variation formula. When choosing

u¢? = 1, one can simplify to get,

1 1 V>ul? A 1
0< / u(VEu*E)Q + §R2 + | U| — Rl + / — (H@M,COSQHE — VgQ) + kox
> o

2u? U sin 0

1 R y 1
:/——u_1|V2u|2—|—/—2+/ kag+/ _Vou — (Hyps — cosOHy, — V50)
s 4 5 2 o5 s U sin 0
1
§/——u‘1\V2u|2+2ﬂxg—/ ao,
s 4 o

Since yy is a 6-bubble (92 # 0), yx < 1 implies |0X] < 3—75 0

Corollary 4.3.3. Consider (M3 ,0M) — (X*,0X) a FMBH and X has
RXZO, H8X2H0>0.

Let the diameter of OM (with respect to don(-,-) under the induced metric) be larger

than some dy > 0, and assume

™
Hy— — = >0
0 do (%) )

then we can find a stable warped 0-bubble (X%, 0%) such that,

2 2
05| < a—” dy;(2,0%) < =
0
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Proof. Using the stability inequality of (M, 0M), we can find a positive u : M — R
1
AMU S 5RM7 VVBMU = H(‘)X(VM, VM)U.

Now using the diameter of OM is at least dy, we want to use the existence of smooth
minimizer in Theorem 4.2.4, for S, = {x € OM,cosf(z) = £1}, and we can assume
that |VoMg| < ;r—o. We check that in this case,

\V4 u+uHgy = uHpgx > uHy > 0.

VoM

We now minimize the following functional as in Theorem 4.2.4 to get a stable

AU(Q):/ u—/ ucos@.
2*Q aMNQ

We remark that now the ambient manifold M is not compact (in Theorem 4.2.4 we

u-warped 6-bubble,

required compactness). We can use a similar adaptation to non-compact manifolds,
as in the proof of Theorem 1.4 and Remark 3.2 in [66]. This is because the condition
Hy — 2 will constrain the minimizer > = 0 to lie close to its boundary 9%, which
was prescribed to lie in a bounded region. We refer the reader to [66] for more details.

We now check that condition (4.3.2) is satisfied.

Viort + u(Honr — Vi) = lox (var, var)u + u(Hanr — Vi)

= u(Hox — Vi0) > u(Hy — di) = apu > (sinf)agu > 0
0

Now Lemma 4.3.2 applies to give the desired bounds for the #-bubble. O
Finally we summarize the inductive procedure for smooth stable warped #-bubble
in a manifold of general dimension with an analogous NNSC and strictly mean con-
vexity assumption. The following lemma can be viewed as the PSC equivalent “in-

heritance” phenomenon for manifolds with NNSC and mean convex boundary. The

proof is the same as Lemma 4.3.2.

Lemma 4.3.4. If (X",0%) — (M™1 OM) is a smooth stable u-warped 6-bubble,
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with w > 0 a smooth function on M, and for some ag > 0,

R vM 2
2 2u

. u
u > (sinf)agu — m(H[)M — Vi)

\%

VoM
then (X", 0%) has for some f > 0,

V=]
2f
Vuazf 2 aOf - ]Iv<az>f

R
Asf < §f+

4.4 Parabolicity and Stability

In [7], the authors proved that a complete non-compact two-sided stable minimal
hypersurfaces in R"*! for n > 3 must have only one end. The use of Michael-Simon-
Sobolev inequality for minimal hypersurfaces in R"*! is crucial since this implies that
any end of a stable minimal hypersurfaces must be non-parabolic. And having two
non-parabolic ends together with the Schoen-Yau rearranged stability inequality using
the Bochner formula, this implies that the stable minimal hypersurface must admit
a non-constant harmonic function with finite energy and must have finite volume, a
contradiction to the monotonicity formula.

In [15], the authors proved that under the assumption of non-negative 2 inter-
mediate Ricci curvature of a 4 dimensional ambient manifold, a stable minimal hy-
persurface with infinite volume can have at most one non-parabolic end. This was
extended to the FBMH case in chapter 2.

In section 4.5, we will show that if M is a simply connected stable minimal hyper-
surface in (X*,0X) as in our main theorem, then M must be connected and have
an end in the only non-parabolic end of M. In this section we prove some auxiliary
results.

We first prove a generalized case to Theorem 2.5.2.
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Lemma 4.4.1. Let (X*,0X) be a complete Riemannian manifold with Ricy > 0 and
(M3, 0M) a FBMH in X. If either

e u is a smooth harmonic function on M with Neumann boundary condition and
1% >0,

e or u 1s a smooth harmonic function on M with Dirichlet boundary condition
and Hyx > 0,

then . .
| FGIEITaR 4 SVIvulP) < [ Vop|vu
M M

Proof. The proof of the Neumann case is in Theorem 2.5.2.
For Dirichlet case, the same proof of applies to get the following (without assuming

any boundary condition),

1 1
| @ GREva + 519IvalP) (a4.1)
Mo 3 2

1
< [ IDOPITuP + [ G500 VU = ox (o, van) V).
M oM

We have 0 = Apru = Agpru + V2u(vonr, vorr) + HonrVi,,,u. The Dirichlet boundary

VoM

condition implies Agpru = 0 and Vu =V, u - Vo,

1
§VV8M|VU|2 =V,,,Vu-Vu

Vom

= (V,,BMU)Vzu(VaM, VaM)

= — (V) Horr = —Hapg | Vul?.

Plug in the last computation into (4.4.1) and use Hyx > 0 then we obtain the desired
inequality. O

Remark 4.4.2. Note that ]ISX > 0 implies Hyx > 0. If OM has more than one com-
ponent and M is 2-convex, the same result as in Lemma 4.4.1 holds if one assumes
Dirichlet boundary or Neumann boundary conditions for the harmonic function on

different components.
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We first recall some definitions and lemmas about parabolicity. Details about this
notion can be found in [42], [15] and [65]. For regularity reasons, we assume here
that each end £ C (M \ K) for some compact set K, if has corner points (where
WE = 0OMNE and O,F .= ENK intersect), then the interior corner has small

angles (no more than %). See section 2.4 for more details on this.

Definition 4.4.3 (65|, Definition 4.4). A component £ C (M \ K) for some compact
set K C M of a Riemannian manifold M is non-parabolic if there is a non-constant

positive harmonic function f : £ — (0,1], and 0,,,, flo,e = 0, flo,g = 1. Otherwise

VoM
E' is parabolic.

Lemma 4.4.4 (|65], Theorem 4.12). If E is non-parabolic, then there is a unique
function f : E — (0,1] with Neumann boundary condition on OoF and Dirichlet on
O\ E, such that if g : E — (0, 1] is also a harmonic function with Neumann boundary
condition on OgE and Dirichlet boundary condition on O1F, then f < g. We call this
the minimal barrier function over the non-parabolic component E. Furthermore, we

can assume the minimal barrier function has finite Dirichlet energy.

Lemma 4.4.5 (|65], Lemma 4.10). If K C K' are two compact sets in M and
E C (M\ K) is a non-parabolic component, then there is a component E' C (M \ K')
and E' C E, such that E' is non-parabolic.

Using a proof similar to Theorem 4.12 in [65] we have the following.

Lemma 4.4.6. If K C K’ are two compact sets in M and E' C (M \ K') is a
non-parabolic component, then the component E C (M \ K) that contains E' must be
non-parabolic.

Equivalently, if K C K’ are two compact sets in M, and P C (M \ K) is parabolic,
then each component of (M \ K') N P must be parabolic.

Definition 4.4.7. We say a Riemannian manifold M is parabolic if there is a point
x € M and a small geodesic ball B,(z) for some r > 0 such that the connected set
M \ B,(z) is parabolic. Otherwise we say M is non-parabolic.

We say that M has at most one non-parabolic end, if for any compact set K C M,
there is at most one non-parabolic component of M \ K. If M is non-parabolic, then

M has exactly one non-parabolic end.
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We note that this definition is independent of the choice of x € M and r > 0.
Indeed, if the connected set M \ B, (x1) is parabolic, then so is the connected set
M\ B,,(x2). Because if M \ B,,(x2) is non-parabolic, take R large so that B, (z1) C
Br(zs), then M \ Bg(zs) must have a non-parabolic component by Lemma 4.4.5,
which then again implies that the set M \ B,,(z2) is non-parabolic by Lemma 4.4.6.

We recall Theorem 5.3 in [65], that a stable FMBH in a 4-manifold with non-
negative “2-intermediate Ricci curvature” and “2-convex” boundary can only have at
most one non-parabolic end if its volume is infinite. We further prove each component

of OM must be non-compact.
Theorem 4.4.8. If (M?,0M) — (X*,0X) is a FBMH and Ricy > 0,15% > 0, then
e cither Vol(M) < oo

e or Vol(M) = oo and M has at most 1 non-parabolic end.

If M is non-parabolic and Vol(M) = oo, then each component of OM must be non-

compact.

Proof. The proof that M with infinite volume must have at most 1 non-parabolic end
is the same as Theorem 5.3 in [65]. We briefly summarize it here.

Given any compact set K C M, if E;(i € {1,2}) is non-parabolic in M \ K, then
on each F; there is a minimal barrier function f; with finite Dirichlet energy. Then
using these two barrier functions one can construct a non-constant harmonic function
on M with finite Dirichlet energy and Neumann boundary condition on M. Using
a linear cut-off function for ¢ in Lemma 4.4.1, we can show that this implies Vol(M)
must be finite.

We now show that if M is non-parabolic, then either M has finite volume, or each
component of M must be non-compact.

Assume 0y M is a compact component of M and denote dyM := OM \ 0; M (this
could be the empty set).

We minimize Dirichlet energy on Bgr(z) D 0,M for some x € M and R > 0,

among functions f such that,

f’81M = 17f|3’BR($) - O7vVaMf’30M = 0.
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As R — oo, the minimizer fr converges in C% (M) to a harmonic function f.,
and (foo)loym = 1, Vi, foolaom = 0.

Let goo be the minimal barrier function on the non-parabolic end £ C (M \ B,.(z))
for a fixed r > 0 so that M C B,(z). Then fr|enBu@) < Yool EnBg(z), Passing to the
limit we get fw|p < goo|r, Which implies f., is non-constant.

The minimizing solution fr has decreasing Dirichlet energy as R — oo. This
implies that f., is a non-constant harmonic function with finite energy and Dirichlet
boundary condition on 9; M and Neumann boundary condition on dyM. By Remark
4.4.2 and Lemma 4.4.1 we get that Vol(M) must be finite, a contradiction. [

We now prove each component of the boundary OM must has an end in the

non-parabolic end of M.

Lemma 4.4.9. Consider (M? 0M) — (X*,0X) a FBMH and Ric; > 0,15* > 0.
Assume (M,0M) is non-parabolic, (Cy)rgen is a sequence of compact sets and Ey C
(M \ Cy) is a sequence of nested non-parabolic components, if Vol(M) = oo then any
connected component T' of OM, must have (I'\ Cx) N Ex # 0 for any k € N.

Proof. Assume I is a component of OM and there is kg € N such that (I'\Cy,)NEy, =
(), then for any k > ko, (I'\ Cx) N E), = (). Note that I\ C), # () since I is non-compact
by Lemma 4.4.8.

We now minimize Dirichlet energy on Cy(k > ky) among functions satisfying the

following,

f|FﬂCk =1, vl/aMf‘Ckﬂ(aM\F) =0, fla’c'kﬂEk =0, f|3’Ck\Ek =1L

Denote the minimizer as fi : Cy, — [0, 1], and the minimal barrier function on Ej, as
fo- Then using extension by constants, ka |V f|? is non-increasing. By maximum
principle, f| FrynCx < fol Fg,NCy» and passing to the limit we have f; converges in
C2.(M) to a harmonic function fs : M — (0,1] such that fo|r =1, V,,,, feloanr =
0, and f, is non-constant, because f.| By < fol By, -

In total we get a non-constant harmonic function with finite Dirichlet energy,

using Remark 4.4.2 we get that the volume of M must be finite. O
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4.5 Proof of almost linear volume growth and Rigid-
ity

We can now start to prove Theorem 4.1.1. We can first pass to the universal cover of
M, in this section, we assume that the FBMH M is simply connected. We assume
all the assumptions of Theorem 4.1.1. By scaling we may assume that Hyx > 2.

We start with a lemma that shows that M must be connected if M is simply
connected.

Recall we use the notation 0M to denote the boundary of a continuous manifold

(M,0M), and if 2 is an open subset of M, we denote the topological boundary as
d'Q.

Lemma 4.5.1. Assume (M,0M) as in Theorem 4.1.1 is simply connected, each
component of OM is non-compact (by Lemma 4.4.8), and each component of OM
must have an end in the end (Ey)ren in the sense of Lemma 4.4.9 (we do not assume

(Ex) is non-parabolic), then OM is connected.

Proof. Now let 0y M, 0,M be two non-compact components. We may take the com-
pact set Cy := Bsgz(x) for some z € M, and Ej is a nested sequence of sets in
M\ Cy. Then using Corollary 4.3.3 for Hy = 2,dy = 7, a9 = 1, we can find a #-bubble
Y = 0'Qy inside Ciyq \ Ck, with each component 3¢ of ) having [0X¢| < 27 and
ds, (z,05¢) <2 for z € X¢.

By simply connectedness of M, 0’ Ey must be connected for any £ € N and (Ej \
Eki1) N Cryq =: My, must also be connected (see [15], [65],[66]).

Now take a point p; € 01 M and py € O, M, for k larger than some ky we may
assume that py, ps € Cj. Since both 0; M and 0, M are non-compact and has an end
in (Ex)g>ko, we must have 0'Ey N ;M # () for k > ko and 7 € {1,2}. That is, any
path in 9; M connecting p; to some point ¢; € E, N J;M must intersect ' Ey, N O;M.
If ¢; € &' Eyyq, then a path p;q; in ;M must intersect 9%;. Since each component of
Y is a disk, we must have that p;qy intersect 9X%, and p2qz intersect 825 for a #£ 5.
We can now connect ¢p,qe with a path in 0'FEj,q, and connect py, po with a path in

C,- This gives us a loop in M with non-trivial intersection to a disk, contradicting
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simply connectedness.
In total, we have shown that at most one component of M can have an end in
(Ex)ken, so OM is connected. O

We now assume that (E})gen is the non-parabolic end of M with respect to Cj, :=
Bspr(z) for some x € OM. If M is parabolic then Ey = (). Assume dM is connected.
We denote Py, := (M \ Cy) \ Ex, and each component of P is parabolic. Denote
My, = (Ey \ Ex41) N Ciyq. We now have the following decomposition of M,

M:Bgﬂ-<l’)UE1UP1 :BgTF(LU)UPlU(MqUPQUEQ)
= By (2) U (UL Bi) U (UL M) U B

Proof of Theorem 4.1.1. Using Corollary 4.3.3 we can find a #-bubble ¥, = 0'Q
inside Ci11 \ Ck with |0X¢| < 27, dy, (2,0%¢) < 2 for any component X of ¥ and
z € ¥¢. In particular, we have the diameter of each Xf is at most m + 4.

Claim: there is a unique component ¢ with 0X¢ # () separating ' Ey, and 0’ Ej 41,
that is, any path from 0'E}) to 0’ Ej41 must intersect X¢.

Take qgy1 € O'Ep 1 NOM, connect x € OM and ¢;,1 with a path in OM, then
Tqry1 must intersect 0’ By NOM at some point g, and must intersect some component
Y with 0X¢ # (. Now if there is another path y from 0'E}, to 0'Ej; that is disjoint
from ¢, as in Lemma 4.5.1, since 0’ Ej, is connected for all k, we can find a loop
in M having non-trivial intersection with the disk Xj, a contradiction to simply
connectedness. We finished the proof of the above claim.

Claim: sup,, diamy, (Mj) < C for some constant C' > 0.

Take y,2 € My, and take the geodesic line Ty, 7z. Now use Ty N 0E; # ()
and Ty N 0Ey41 # (0 together with the first claim, we get that 7g N X¢ # (. Let
yr € Ty N XL, Similarly, we get T2 N XY # () and 2z, € T2 N 3¢, Now we have,

72| < |[ygk] + [kzk| + |Zk2| < 67 + (7 +4) + 67 = C.

Using Lemma 2.3.1 and Lemma 2.3.3, we get that there is a constant Cy > 0 such
that sup, Vol(M}) < Cp.
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We now use a suitable cut-off function to show the the non-parabolic end of M
has linear volume growth.

Let ¢ be a cut-off function such that ¢i|p,,. () = 1, Yi|(an\ Bger(z)) = 0 and with
Vr| < % everywhere and ¢y|p,, is constant for k£ < m < 2k.

On the parabolic ends P,, we use the existence of harmonic functions converging
to 1 everywhere, with Dirichlet energy converging to 0 (see [42], [15], [65]). That is,
let u!, be harmonic functions on P,,, with u! |sp, =1, u! |p, — 1 as | — oo, and
Il P |Vaul |2 — 0. We may further assume that, by choosing [ large (depending on
k,m), we have [, [Vul,|[> < 327™

We define v} : M — [0,1] such that vF|p, = ul, for m < 2k, and v} is constant
otherwise.

Let ¢ = py0vt, then recall the stability inequality of M,

/ (Ricx (var, var) + a2 2 (0h)? + / Tox (v, o) 02 (0l
M oM

<2 / VP (oh)? + 2 Vo2 P2
M
2k

9 2k
<23t [ obreeY [ vir
m m:1 m

m=k
2k 10 2k 1
m=k m=1

1
§(1000+4>E_>0 as k — 0.

Since ¢l — 1 everywhere, and all terms on the left hand side of the inequality is

non-negative by assumption, we obtain the desired rigidity results. O
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