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Minimal Surfaces in Real Life

Image credit: Ted Kinsman, Blinking Spirit, Paul Nylander

Minimizing area while fixing the boundary (the wire): existence and regularity.

This is the Plateau’s problem.

Image credit: Malte Sörensen, Kate Fraser, Joaquim Alves Gaspar

As one blows air into a soap bubble, the surface tension increase while
enclosing a fixed “volume” inside the bubble.
Does the sphere minimize area given a fixed volume inside?

This is the isoperimetric problem.
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Minimal Surfaces in Real Life

When we put liquid into a tube, the surface tension balances with adhesion

between the tube and the liquid.

Capillary Action
A: Capillary attraction.
B: Capillary repulsion.
Image credit:Jleedev

No gravity: surfaces have constant mean curvature and constant angle along

the container.

Applications of capillary action can be seen in many aspects of life.

Image Credit: Pat Hastings, Content Pixie

3 / 27



Minimal Surfaces for Mathematicians

◮ In 1762, Lagrange found the Euler-Lagrange equation for Plateau’s
problem of a graph z = z(x , y) in R3,

div

󰀣
∇z󰁳

1 + |∇z |2

󰀤
= 0.

◮ He found only one solution, the plane. A surface satisfying this
equation is a critical point to the area functional, and is called a
“minimal surface”.

◮ In 18 and 19th century, more minimal surfaces are discovered,
including the catenoid and helicoid (1744 Euler, 1776 Meusnier).

◮ The Plateau’s problem for surfaces was completely solved in 1930
independently by Douglas and Radó.

4 / 27



Minimal Surfaces in Modern Days

◮ Extending the existence and smoothness of minimizers of Plateau’s
problem to higher dimensions turn out to be difficult.

◮ Singularities could occur for hypersurfaces in dimension 8 or higher,
or for codimension 2 or more.

◮ Efforts in these directions contributed massively to the development
of geometric measure theory.

◮ Meanwhile, minimal surfaces also find other geometric applications,
one of which is the study of manifolds with positive scalar curvature
(PSC), e.g. Geroch Conjecture.

Schoen-Yau 1979, Gromov-Lawson 1983, Geroch Conjecture
Consider X n a closed manifold and Tn the n-torus (3 ≤ n ≤ 7), then
Tn#X has no PSC metric.

Schoen-Yau 1979, Positive Mass Theorem
Let (Mn, g) be an asymptotically flat manifold with Rg ≥ 0, 3 ≤ n ≤ 7,
then its ADM mass mg ≥ 0, and mg = 0 if and only if M is isometric to
the Euclidean space.
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Geroch Conjecture ⇒ Positive Mass Theorem

Idea of Proof.
We show how the Geroch conjecture implies mg ≥ 0 in this setting.

◮ Lokhamp: if mg < 0, then M has a metric ĝ with Rĝ ≥ 0,
(M \ K , ĝ) is isometric to Rn \ BR(0), and Rĝ (x0) > 0.

◮ Cut (M, ĝ) with a large cube and identify the boundary so that now
(M, ĝ) ≈ Tn#X n for a closed manifold X n.

◮ Kazdan-Warner, Kazdan: for a closed manifold Nn, n ≥ 3 with
RN ≥ 0,Ric ∕≡ 0, then N has a PSC metric.

◮ Then we obtain a contradiction.
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Proof of Geroch Conjecture

Geometric Idea
Stable minimal hypersurfaces of a PSC manifolds also admit a metric of
PSC (after a conformal change of metric). This method is called
Schoen-Yau’s conformal descent method.

Proof Tn has no PSC metric
◮ If n = 2 the claim follows from Gauss-Bonnet.

◮ We now induct using the method of “Conformal Descent”.

◮ A torus Tn has enough topology so we can minimize in a non-trivial
homology class inductively, to obtain a chain of nested stable
minimal hypersurfaces, Tn ⊃ Σn−1 ⊃ Σn−2, ...,⊃ Σ2.

◮ For n ≤ 7, these minimizers must be smooth.

◮ Now Σ2 has PSC and must be spheres (Gauss-Bonnet).

◮ Σ2 has non-trivial H1 by induction. A contradiction.
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The Method of µ-bubble

Stable minimal hypersurfaces do not always exists (as we will prove later
in some cases). How to generalize?
We can trade minimality for existence and stability inequality.

Definition (Gromov 1996, 2018)
Roughly speaking, a µ-bubble in a manifold (Mn, g) is a smooth open set
Ω that minimizes the following functional, given h ∈ C∞(M),

A(Ω) = Area(∂Ω)−
󰁝

Ω

hdHn.

◮ If h = 0 then this is the area functional.

◮ If n ≤ 7 then a minimizer Σ = ∂Ω is always smooth.

The first variation: HΣ = h|Σ. The A(·) is also called the “prescribed
mean curvature” (PMC) functional.
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The Method of µ-Bubble: A Model Case for 3-Manifolds

We choose h on (M3, g) so that the sets Σ± := {x ∈ M, h(x) = ±∞}
serves as “barriers” to constrain and make sure a minimizer must exist.

◮ A smooth minimizer must
contain Σ+ and be disjoint from Σ−.

◮ The second variation
is non-negative (stability inequality).

◮ Rg ≥ 2, and d0 := diam(M) > 2π:
=⇒ Σ also admit PSC.

◮ A PSC surface has bounded diameter.

◮ Localization if M is non-compact.
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Topology and Geometry of PSC manifolds

The µ-bubble method allows us to obtain new geometric estimates for
PSC 3-manifolds.

◮ Topologically, a 3-manifold with uniform PSC must be connected
sum of S2 × S1 and space forms (quotients of S3).
◮ Uses Gromov-Lawson 1983, Geometrization proved by Perelman in

2003, and combined works of Chang-Weinberger-Yu 2010,
Besseeres-Besson-Maillot 2011, Wang (using µ-bubbles) 2023.

◮ More Quantitatively: a complete 3-manifold (M, g) with
Rg ≥ R0 > 0 is close to being “one-dimensional”.
◮ Liokumovich-Maximo 2020, Liokumovich-Wang 2023
◮ There is a continuous map f : M → R such that every component of

a fiber must have bounded diameter and area.
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Urysohn Width and the µ-Bubble Method

Definition
A metric space (X , d) has k-Urysohn width bounded by d0 > 0, if there
is a continuous map to a k-dimensional space f : X → G k , such that
diamd f

−1(g) ≤ d0 for all g ∈ G .

Example
Any compact n-manifold has bounded 0-Urysohn width.
Positive Ricci lower bound gives uniform bound on 0-Urysohn width.
What about scalar curvature?

Conjecture (Gromov, 2017)
If (X n, g) with n ≥ 2 is a closed Riemannian manifold with Rg ≥ 1, then
its (n − 2)-Urysohn width is bounded by c(n) > 0.
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Urysohn Width and the µ-Bubble Method

The µ-bubble method can be used to give a short proof of the simply
connected case of Gromov’s conjecture.

Theorem (Chodosh-Li, 2024)
If (M, g) is a simply connected 3-manifold with Rg ≥ 2, then the
1-Urysohn width of M is bounded from above by 10π.

Proof.
Fix a point x ∈ M, and consider the bands Mk := BM

2(k+1)π(x) \ BM
2kπ(x),

since Rg ≥ 2 over each band of length at least 2π, we can

◮ put a µ-bubble called Σ2 inside with diameter no more than 2π;

◮ using simply connectedness we know that Σ is separating in Mk ;

◮ using triangle inequality we get that the diameter of each Mk is no
more than 10π.

12 / 27



Applications of 1-Urysohn Width Bound

Theorem (Chodosh-Li, 2024)
The following two generalized Geroch Conjecture holds,

◮ Closed aspherical 4 or 5 manifolds has no PSC.

◮ Tn#X (2 ≤ n ≤ 7) for any manifold X has no complete PSC metric.

Remark
A torus is aspherical. The extensions follows the idea of the proof of
Schoen-Yau but generalized in the sense that here we need to find
(generalized) minimal surfaces in a space with little topology.
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Rigidity of Stable Minimal Hypersurfaces

Earlier rigidity results using stability of Mn ⊂ X n+1:󰁝

M

|∇φ|2 ≥
󰁝

M

(RicX (νM , νM) + |IIM |2)φ2.

◮ If RicX ≥ 0, then any compact stable minimal hypersurface is totally
geodesic, and RicX (νM , νM) = 0 along Mn (Simons 1968).

◮ RicX > 0 implies non-existence.

◮ If RX ≥ 1 then M admit a metric of PSC (Scheon and Yau, 1979).

◮ If n = 2 and M is complete non-compact, then RX ≥ 0 implies M
must be conformal to a plane or a cylinder. In the latter case, M
must be totally geodesic, intrinsically flat, (Fischer-Colbrie and
Schoen 1980).

What is the correct assumptions when n = 3 and M is non-compact?

◮ There exists a stable totally geodesic R3 embedded in (R4, g) with
sec > 0. So sec > 0 does not imply non-existence.

◮ RicX ≥ 1 also cannot rule out existence using the method of second
variation.
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Rigidity of Stable Minimal Hypersurfaces

Curvature hierarchy of a manifold X :

◮ sec ≥ 0 =⇒ Ric2 ≥ 0 =⇒ Ric ≥ 0.

Theorem (Chodosh-Li-Stryker, 2022)
Consider (X 4, g) has weakly bounded geometry and

RicX2 ≥ 0, RX ≥ R0 > 0.

Then any complete two-sided stable minimal hypersurface M3 ↩→ X 4

must have
|IIM | = 0, Ric(νM , νM) = 0,

for νM a choice of unit normal along M.

In particular, S4 has no complete two-sided stable minimal hypersurfaces.
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Ingredients of the Proof.
We may assume M is simply connected. Recall stability:󰁝

M

|∇φ|2 ≥
󰁝

M

(RicX (νM , νM) + |IIM |2)φ2.

◮ Goal: show M has almost linear volume growth.

◮ X 4 is PSC ⇒ M3 inherits PSC ⇒ M has bounded 1-Urysohn width.

◮ We still need to control the number of ends of M, this relates to the
notion of parabolicity.

◮ If M is parabolic, then on each end of M, one can find a sequence of
harmonic functions ui that are good test functions for stability,

󰁝

M

|∇ui |2 → 0, ui
C∞
loc (M)−−−−→ 1.

◮ If not, RicX2 ≥ 0 implies a Liouville theorem: harmonic function on
M with finite energy must be constant.

◮ This allows us to show M has at most one non-parabolic end.
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Free Boundary Minimal Hypersurfaces
Definition
An free boundary minimal hypersurface (Mn, ∂M) ↩→ (X n+1, ∂X ) is a
critical point to the area functional among all variations that send ∂X to
∂X , we call M a FBMH.
Equivalently, this means HM = 0, and M meets with ∂X orthogonally.

Theorem (W., 2023)
Consider (X 4, ∂X , g) has weakly bounded geometry

RicX2 ≥ 0,RX ≥ R0 > 0, II∂X ≥ 0.

Then any complete two-sided stable free boundary minimal hypersurface
(M3, ∂M) ↩→ (X 4, ∂X ) must have

IIM = 0,RicX (νM , νM) = 0, II∂X (νM , νM) = 0

◮ Hierarchy of convexity: II∂X ≥ 0 =⇒ II∂X2 ≥ 0 =⇒ H∂X ≥ 0.

◮ Rearranged stability inequality, RicX2 ≥ 0 and II∂X2 ≥ 0 (2-convexity of the
boundary) =⇒ the same Liouville theorem holds for M.

◮ Using free boundary µ-bubbles and H∂X ≥ 0 we can show the 1-Urysohn
width bound also holds for M.
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Trading Uniform PSC with Uniform Mean Convexity

The unit ball B4 does not have PSC, but has uniformly convex boundary.
Can we trade the Rg ≥ 1 with H∂X ≥ 1?

◮ Franz 2022 proved, if (X 3, ∂X ) has “weakly positive geometry”,
◮ either RX ≥ R0 > 0,H∂X ≥ 0 and ∂X has no minimal component,
◮ or RX ≥ 0,H∂X ≥ H0 > 0,

then any stable FBMH M ↩→ X must be a compact disc with
intrinsic diameter bounded by a constant C (R0,H0).

Theorem (W,. 2025)
Consider a 4-manifold (X 4, ∂X ) with weakly bounded geometry, assume

RicX2 ≥ 0, II∂X ≥ 0,H∂X ≥ H0 > 0.

If (M3, ∂M) ↩→ (X 4, ∂X ) is a complete stable FBMH, then M has

|IIM | = 0,RicX (νM , νM) = 0, II∂X (νM , νM) = 0.

The assumption of PSC allows us to use µ-bubbles, a key tool to obtain
geometric control. What should we do now?
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Capillary Hypersurfaces

Capillary surfaces help us study manifolds with non-negative scalar
curvature (NNSC) and uniformly mean convex boundary.

Definition
A capillary hypersurface Σn = ∂Ω in Mn+1 is a critical point to,

Ec(Ω) := Area(∂Ω)− cos θArea(Ω ∩ ∂M),

among variations that fix the volume ratio λ0 :=
Vol(Ω)
Vol(M) .

Figure: Robert Finn

Equivalently, Σ is a capillary hypersurface
if it has constant mean curvature
and intersect with ∂M at a constant angle.
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Generalized Capillary Hypersurfaces: θ-Bubbles

The idea: having NNSC and Mean Convex Boundary can be also
inherited by (generalized) capillary hypersurfaces.

Definition
Consider a manifold with boundary (Mn+1, ∂M), given a smooth function
θ ∈ C∞(∂M), a θ-bubble Σ = ∂Ω is a minimizer to,

Eθ(Ω) := Area(∂Ω)−
󰁝

Ω∩∂M

cos θ.

First and Second Variation

HΣ = 0, 〈ν, ν̄〉 = cos θ(x)

We may call a θ-bubble, a “prescribed contact angle” surface.
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The Method of θ-Bubble: A Model Case for 3-Manifolds

We choose θ on ∂M so that the sets Σ± := {x ∈ ∂M, cos θ = ±1} serves
as “barriers” to constrain and make sure a minimizer Σ must exist.

◮ Solomon-White: if H∂M ≥ 0
and cos θ ≡ 1, then Σ must be minimizing
across ∂M, either disjoint to ∂M, or
equal to a connected component of ∂M.

◮ Using a similar argument,
here H∂M > 0 gives a minimizer
always exists and ∂Σ ⊂ {| cos θ| < 1},
Σ is smooth if dim(Σ) ≤ 4.

◮ Stability inequality: RM ≥ 0,H∂M ≥ 2
and d0 := diam(∂M) > π,
=⇒ RΣ ≥ 0,H∂Σ > 0.

◮ This leads to localization of ∂Σ when
M is non-compact. Further estimates
dΣ(x , ∂Σ) ≤ 2

a0
localizes Σ totally.
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The Method of θ-bubble

Using θ-bubbles, we can obtain the following geometric estimates.

Theorem (W., 2024)
If (S2, ∂S) is a complete connected manifold with RS ≥ 0 and k∂S ≥ 1,
then S is a compact topological disk with |∂S | ≤ 2π and d(x , ∂S) ≤ 1
for any x ∈ S. Furthermore, if |∂S | = 2π then S is isometric to the unit
disk in R2.

Theorem (W., 2024, Obstruction to Gromov’s Fill-In Question)
If (M3, ∂M) is a complete simply connected Riemannian manifold with
RM ≥ 0,H∂M ≥ 3, then the 1-Urysohn width of ∂M with respect to the
induced metric is at most 3π.
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The Method of θ-Bubble

Theorem (Gromov 2020, Bandwidth Estimate)
Let 2 ≤ n ≤ 6, consider M = (Tn × [−1, 1], g) such that Rg ≥ n(n + 1),
then dg (Tn × {+1},Tn × {−1}) ≤ 2π

n+1 . And the bound is sharp.

Theorem (W., 2024, Bandwidth Estimate)
Let (M3, ∂M, g) = Σ0 × [−1, 1] with (Σ0, ∂Σ0) an orientable surface
with χ(Σ0) ≤ 0. If RM ≥ 0,H∂0M ≥ 2 and H∂M > 0, then
d∂M(∂S+, ∂S−) ≤ π, in particular dM(S+, S−) ≤ π.
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The Method of θ-bubble

The idea is that we can chop ∂M into chunks of bounded diameter.

Corollary (W., 2024, Linear Growth of ∂M)
If (M3, ∂M) be a complete simply connected NNSC Riemannian
manifold. If ∂M is uniformly mean convex and has weakly bounded
geometry, then each end of ∂M has linear volume growth. In particular,
if ∂M has finitely many ends, then ∂M has linear volume growth.

Remark
Linear volume growth in the interior can not be obtained for NNSC
manifolds.
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Back to Rigidity of FBMH in B4:
Trading Mean Convexity for PSC

So far we are using that (M3, ∂M) inherits the NNSC and mean
convexity through stability, and are only able to obtain control of ∂M.
Note M may have compact or disconnnected ∂M.
We need to further exploit stability to control the interior of M.
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Rigidity of complete FBMH in B4

Theorem (W,. 2025)
Consider a 4-manifold (X 4, ∂X ) with weakly bounded geometry, assume

RicX2 ≥ 0, II∂X ≥ 0,H∂X ≥ H0 > 0.

If (M3, ∂M) ↩→ (X 4, ∂X ) is a complete stable FBMH, then M has

|IIM | = 0,RicX (νM , νM) = 0, II∂X (νM , νM) = 0.

Ingredients of the Proof

The goal is still to show M has almost linear growth on an end.

◮ Rearranged stability inequality, RicX2 ≥ 0 and II∂X2 ≥ 0 together
implies the same Liouville theorem holds for M.

◮ Further exploiting the Liouville theorem:
◮ M has at most one non-parabolic end;
◮ ∂M cannot have any compact component;
◮ each component of ∂M must has an end in the only non-parabolic

end M has.

◮ Now using simply-connectedness, we can exhaust the non-parabolic
end of M using θ-bubbles and obtain this end has linear growth.
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Thank You For Listening!

Jean Siméon Chardin, 1733-34 Marie Gale, 2012
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